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Objective

Correlated data, Longitudinal study (previously match pairs)

Generalized Estimating Equation (GEE) approach for building
marginal models

working correlation

Use SAS/R to fit GEE models and understand outputs

Motivating examples:

Longitudinal study on schizophrenia (a mental disorder), measuring
illness (level 1-7).
– introduce GEE

Longitudinal study on depression, dichotomous assessment (0, 1)
– R and SAS coding + outputs

More examples on sas coding page.
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Correlated or Clustered Data

Sharing location and resources often lead to clustered/correlated data.

A study of water-borne diseases in several African villages. We would
expect a positive correlation among the disease statuses of subjects
using the same well

A study of high cholesterol in a community. We would expect
correlation among the cholesterol levels of subjects from the same
family

A study of the flu in eighth grade classrooms across Iowa. We would
expect correlation among the students from the same classroom

Outcome variables measured on twins or husbands and wives are
typically treated as correlated data. In general, studies involving
matching give rise to correlated data

Longitudinal data is a common type of clustered data in which subjects are

repeatedly measured at different points in time.
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Longitudinal study on Schizophrenia

For example, Data analyzed by Hedeker and Gibbons (1997). A
randomized trial for schizophrenia:

312 patients received drug therapy and 101 received placebo

measurements at weeks 0, 1, 3, 6, but some subjects have
missing data due to dropout

outcome: severity of illness (1=normal, . . . , 7=extremely ill)
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Left: “Spaghetti plot” of response curves for drug patients

Right: “Spaghetti plot” of response curves for placebo patients

For these plots, every line depicts trajectory for one subject
across different evaluation times.
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Left: average trajectories for the placebo and drug groups plotted
against week

Right: average trajectories for the placebo and drug groups plotted
against square root of week

After taking average, these plots do not contain subject-specific
information anymore. It is marginal.

At baseline (week 0), the two groups have very similar averages. This
makes sense. In a randomized trial, the groups are initially just a
random division of the subjects.
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Based on the above observation, it makes sense to fit a model for mean
response with

an intercept

a main effect for treatment group

a main effect for
√

week

an interaction term between treatment group and
√

week

This allows the two groups to have different intercepts and slopes.

Because the intercepts are defined as the average responses at week 0, we
expect that the main effect for group (i.e. the difference in intercepts) will
be small.

Question: How can we fit this model, taking into account the fact that the

multiple observations for a subject are correlated?
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Longitudinal Study of Treatments for Depression

Subjects were classified into two groups based on their diagnosis
severity

In each group, subjects were randomly assigned to one of two drugs

Dichotomous assessment of each subject’s extent of suffering from
mental depression was made at weeks 1, 2, and 4

There are 340 subjects and 3× 340 = 1020 responses
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We want to model Pr(response=“normal”) in terms of other covariates.
So look at the sample proportions. Note that, the table and plots do not
contain subject-specific information anymore. It is marginal.
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Marginal Models and Conditional Models

Marginal Models

logit(π) = α + β1severity + β2drug + β3time + β4(drug× time)

This model doesn’t make a distinction the observations are from the
same subject or not, even though responses from the same subject
tend to be similar.

Effects are population-averaged

Conditional Models

logit(π) = αi + β1severity + β2drug + β3time + β4(drug× time)

Each subject has his/her own αi

Effects are subject-specific

From α to αi , a small step in notation, a big step in modeling
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Marginal Modeling: The Generalized Estimating Equations (GEE)

There is no likelihood function for GEE

It does not assume a joint distribution on the responses from a
cluster. It only assumes a particular distribution (e.g., binomial) for
each responses.

GEE is a quasi-likelihood method that assumes a relationship between
E (Y ) and Var(Y ), where Y represents the response

GEE estimates of model parameters are obtained by solving
generalized estimating equations

It requires an educated guess of the correlation structure among Y s,
or the working correlation matrix

GEE provides a robust (aka empirical) estimate of the correlation
matrix

Hence better guess is helpful but not essential, especially when
sample size is large (Think about working correlation matrix as a prior
and the robust estimate as the updated estimate given data)
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∗ An outline of GEE

ith cluster of responses: yi = (yi1, yi2, . . . , yini )
t

Mean of yij is µij which is assumed to satisfy the following model:

g(µij) = β0 + xi1β1 + . . .+ xipβp

where g is the link function: identity link; logit link

Variance of yij is
Var(yij) = v(µij) · φ

v(·) is a known function: v(µij) = 1 for linear regression;
= µij(1− µij) for binary response; = µij for Poisson response
φ is possibly unknown. φ = 1 for binary and Poisson response
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∗ An outline of GEE (cont.)

Let
Ai = Diag(Var(yi1),Var(yi2), . . . ,Var(yini ))

and
Vi = A

1/2
i RiA

1/2
i

where Ri is the correlation matrix within the cluster. The generalized
estimating equation (GEE) is given by

n∑
i=1

∂µij

∂βk
Vi
−1(yi − µi ) = 0, k = 0, 1, . . . , p

βs are estimated by the solutions to these equations.

Let D = ∂µ
∂β and V = Diag(V1, . . . ,Vn), the GEE can also be written

as
U = D ′V−1(y − µ) = 0.

Often times, we don’t know the true correlation matrix and instead
use a “working” correlation matrix R̃i specified by users (R̃i ↔ Ṽi ).
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Correlation Structures

The key to analyzing clustered data is to characterize the correlation
structure in the measured response variable. We will assume the following:

The data can be arranged into clusters such that there is correlation
among the observed responses within clusters, but not between
clusters

In the Longitudinal Study of Treatment for Depression, the clusters are
defined by the individual subjects. We assume that observations from a
given subject are correlated over time, but that they are not correlated
with the observations from other subjects

The correlation structure is the same within each cluster

The correlations between each of week 1 and 2, week 2 and 4, and weeks
2 and 4 are the same from subject-to-subject
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In general, we summarize all the pairwise correlations within a cluster using
a correlation matrix. The correlation matrix is symmetric.

For each subject in our example, we have a 3×3 correlation matrix:

R =

 1 ρ12 ρ13
ρ21 1 ρ23
ρ31 ρ32 1


The correlation terms correspond to the following:

Notation Correlation between observations at
1 The same week

ρ12 = ρ21 weeks 1 and 2
ρ13 = ρ31 weeks 1 and 4
ρ23 = ρ32 weeks 2 and 4

Currently, this correlation matrix is unstructured. Depending on the study

design, we may decide to make various assumptions about the structure of

the correlation matrix. There are many different types of correlation

structures
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Independence Correlation Structure

An independence correlation assumption implies that there is no
correlation within clusters.

The corresponding correlation matrix is

R =

 1 0 0
0 1 0
0 0 1



16 / 27



Exchangeable Correlation Structure

An exchangeable or compound symmetric structure implies a constant
correlation within clusters. That is, any given pair of observations is no
more or less correlated than any other pair

In terms of the example, this would imply that the correlations are equal
between all time points.

R =

 1 ρ ρ
ρ 1 ρ
ρ ρ 1


This is a rather strong assumption for longitudinal data. It essentially
implies that the correlation between observations taken at adjacent time
points is the same as those taken 2, 3, or more time points apart

It is useful when

There is no distinct ordering within clusters

Observations can be considered a random sample within a cluster
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Auto-Regressive Correlation Structure

The auto-regressive structure allows the correlation to vary as a function of
the “distance” between the observations within a cluster.

This is attractive for longitudinal data since it allows for the correlation to
decrease as observations are taken further apart in time.

In general, the correlation between the observation in the ith row and jth
column is ρ|i−j|. In our example, the corresponding correlation matrix is

R =

 1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1


It is useful when

There is a natural ordering to the observations within clusters

Assuming a constant correlation between adjacent observations

The correlation strictly decreases as a function of the distance
between observations
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Unstructured Correlation Structure

An unstructured correlation assumption places no restrictions on the
correlation matrix. In this case, correlation is allowed to vary between all
observations in the cluster.

The correlation matrix has the form

R =

 1 ρ12 ρ13
ρ21 1 ρ23
ρ31 ρ32 1



It is useful when

Do not want to assume a constant correlation between adjacent
observations

Do not want to specify a functional form that relates the correlation
to the distance between observations
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Properties of GEE

The estimated β̂ is consistent and asymptotically unbiased estimate
of β, even if Ṽi 6= Vi . It is also asymptotically normal.

If Ṽi 6= Vi , the β̂ is not efficient. The asymptotic variance of β̂ is the
lowest when Ṽi = Vi .

The (D ′Ṽ−1D)−1 is called the “model-based” or “naive” estimator of
the Var(β̂). When Ṽi = Vi , the naive estimator is not a consistent
estimator for Var(β̂).

The “naive” estimator can be corrected by “robust” or “sandwich”
estimator. The “robust” estimator is a consistent estimate of Var(β̂)
even if Ṽi = Vi .

(D ′Ṽ−1D)−1(D ′Ṽ−1W Ṽ−1D)(D ′Ṽ−1D)−1,

where W = Diag((y1 − µ1)2, . . . , (yn − µn)).
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Further Comments

GEE does not provide SE for the off-diagonal elements so a test can not be
conducted to test the true correlation matrix.

In the presence of clustering, specification of the independence correlation

structure seems like a poor choice. Indeed, it is the least desirable option

for describing within-cluster correlation. However, when working with large

or complex data sets, it is not always possible to obtain GEE estimates for

all of the correlation structures. In practice, the independence structure

may be the only structure for which GEE estimates can be obtained

21 / 27



SAS output for the Depression Study
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Answer the following questions:

What is the estimated time effect (slope) for standard and new drugs?

Is there strong evidence of faster improvement for the new drug?

How to interpret β̂1 = −1.314?

How to interpret β̂2 = −0.059?

How to interpret exp(−0.059 + 1.017t)?
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The GENMOD results labeled “Empirical Standard Error Estimates” are
referred to as robust estimates. These standard errors are valid even if the
specified correlation structure is not appropriate for the given data set

The estimated correlations between time points are given in the working
correlation matrix.

The estimated time effect is β̂3 = 0.482 for the standard drug and
β̂3 + β̂4 = 1.5 for the new one

The change of slope due to new drug is β̂4 = 1.017 (Robust SE =
0.188). The Wald test of no interaction, H0 : β4 = 0, tests a common
time effect for each drug. Its z test statistic = 1.017/0.188 = 5.4
(p-value < 0.0001). There is strong evidence of faster improvement
for the new drug

The severity of depression estimate is β̂1 = −1.314 (Robust SE =
0.146). For each drug-time combination, the estimated odds of a
normal response when the initial diagnosis was severe is
exp(−1.314) = 0.27 times the estimated odds when the initial
diagnosis was mild
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The estimate β̂2 = −0.059 (Robust SE = 0.228) for the drug effect
applies only when time = 0 (i.e., after one week, as we have taken
log2 for week), for which the interaction term does not contribute to
the drug effect. It indicates an insignificant difference between the
drugs after 1 week.

At time t, the estimated odds of normal response with the new drug
are exp(−0.059 + 1.017t) times the estimated odds for the standard
drug, for each initial diagnosis level. By the final week (t = 2), this
estimated odds ratio has increased to 7.2

In summary, severity, drug treatment, and time all have substantial
effects on the probability of a normal response. The chance of a
normal response is similar for the two drugs initially and increases
with time, but it increases more quickly for those taking the new drug
than the standard drug

This conclusion is consistent with the graphical representation of the
sample proportions
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GEE summary

GEE provides marginal model and its parameter estimates are
population-averaged rather than subject-specific

Advantages

The algorithm is easily accessible in PROC GENMOD and may be
used with any of the regression models available in the procedure
(e.g. linear, logistic, and Poisson)

Inferences are valid even if the wrong correlation structure is specified

Disadvantages

Does not provide standard error estimates for the parameters in the
correlation matrix

The auto-regressive structure in GENMOD assumes that longitudinal
observations are made at fixed, equally-spaced time points

The disadvantages of GEE could be overcome by using a mixed-effects

model which provides conditional models. Mixed models, however, are

sensitive to the chosen correlation structure.
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