
BIOS 6110
Applied Categorical Data Analysis

Instructor: Yuan Huang, Ph.D.

Department of Biostatistics

Fall 2017



Part II

Contingency Tables

1 / 55



Objectives

Probability structure for contingency tables

Proportions, odds ratios, and other risk measures

Test for independence

- Alternative: not independent

- Alternative: linear trend (ordinal data)

Association in Three-way Tables

Agresti (2002), Section 2.1 - 2.5, 2.7

Self-read: Exact inference for small sample

Agresti (2002), Section 2.6

2 / 55



Contingency Table

A two-way contingency table is a cross-classification of observations
by the levels of two discrete variables. The cells of the table contain
frequency count.

A two-way contingency table with I rows and J columns is called an
I × J table. Denote

X : row variable with I categories i = 1, 2, . . . , I

Y : column variable with J categories j = 1, 2, . . . , J

The simplest one is a 2× 2 table.

[Example] Belief in Afterlife by Gender

Have belief No belief
Female 509 116
Male 398 104
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Notations - Counts

We observe (X ,Y ) for a sample of n subjects. Let nij be the
number of subjects having (X = i ,Y = j).

Grand total: n

Cell count: {nij}i ,j i = 1, . . . , I ; j = 1, . . . , J

Row total: ni+ = ni1 + ni2 + · · ·+ niJ =
∑J

j=1 nij , i = 1, . . . , I

Column total: n+j = n1j + n2j + · · ·+ nIj =
∑I

i=1 nij , j = 1, . . . , J

Row totals and column totals are marginal totals.

I∑
i=1

J∑
j=1

nij =
∑
i

ni+ =
∑
j

n+j = n
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Notations - Probabilities

Joint probabilities
πij = Pr(X = i ,Y = j), i = 1, . . . , I ; j = 1, . . . , J

Marginal probabilities

Row margins
πi+ = πi1 + πi2 + · · ·+ πiJ =

∑J
j=1 πij , i = 1, . . . , I

Column margins
π+j = π1j + π2j + · · ·+ πIj =

∑I
i=1 πij , j = 1, . . . , J∑

i ,j

πij =
∑
i

πi+ =
∑
j

π+j = 1

Conditional probabilities: probability of a level of one variable given
the level of the other variable.

πj |i =
πij
πi+

, and πi |j =
πij
π+j
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Notations - Sample Proportions

The sample cell proportion is pij =
nij
n

The marginal row proportion is pi+ = ni+
n

The marginal column proportion is p+j =
n+j

n

[Example] Belief in Afterlife by Gender - with notations

Have belief No belief Total Proportion

Females n11 = 509 n12 = 116 n1+ = 625 p1+ =
625

1127
= 0.555

p11 =
509

1127
= 0.452 p12 =

116

1127
= 0.103

Males n21 = 398 n22 = 104 n2+ = 502 p2+ =
502

1127
= 0.445

p21 =
398

1127
= 0.353 p22 =

104

1127
= 0.092

Total n+1 = 907 n+2 = 220 n = 1127

Proportion p+1 = 0.805 p+2 = 0.195
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Sampling Schemes and Study Design

What are some ways of generating the tables of counts?

Unrestricted sampling (Poisson)

Sampling with fixed total sample size (Multinomial)

Sampling with fixed certain marginal totals
(Product-Multinomial, Hypergeometric)
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Multinomial Sampling

Draw a sample of n subjects from a population and record (D,E )
for each subject. For example,

D: 1 - no disease; 2 - disease
E : 1 - low exposure level; 2 - high exposure level

Then the joint distribution of nij is multinomial with index n and
parameter π = {πij}, where the grand total n is known.

Sometimes we express the parameter in terms of the cell means
µij = E (nij) = nπij .

In this case, you can estimate joint probability, marginal probability,
and conditional probability.
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Poisson Sampling

Collect data until the sunset, or until the experimenter runs out of
the supplies, or ... etc.

No margins of a table are fixed by design. Each cell is considered to
be an independent Poisson variable. That is, the cell counts will be
independent with Poisson distribution with nij ∼ Poisson(µij), for
i = 1, . . . , I and j = 1, . . . , J.

From a likelihood standpoint, we get the same inferences about
π = {πij}, whether n is regarded as fixed or random. Therefore,
Poisson data may be analyzed as if they were multinomial if n is not
of interest.
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Product-multinomial Sampling

Collect data on a predetermined number of individuals for each category of
one variable and classify them according to the other, i.e., one margin is
fixed by design while the other(s) is free to vary.

Cohort Studies

Case-Control Studies

Viewing data as product-multinomial is appropriate when

Row totals are truly fixed by design

Row totals are not fixed, but we are only interested in P(Y |X ). That
is, when Y is the outcome of interest, and X is a covariate that we
do not wish to model.

From the likelihood standpoint, if the data are collected as multinomial
distribution but the parameters of interest are functions of πj|i , then the
correct likelihood-based inference may be obtained by treating the data as
if they were product-multinomial.
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Cohort Studies

In a cohort study, sampling is carried out separately at different
exposure levels, leading to distinct cohorts.

1. Identify two subgroups based on the levels of exposure E . That
is, E = 1 with low exposure level and E = 2 with high exposure
level.

2. Take a random sample from each of these two subgroups
separately, of sizes nE=1 and nE=2, respectively.

3. Measure subsequently the absence (D = 1) and presence
(D = 2) of disease for individuals in both samples.

In this case, the joint probability and marginal probability are not
meaningful. For conditional probability, you can estimate
P(D = 1|E = 1), P(D = 1|E = 1),P(D = 1|E = 2), and
P(D = 2|E = 2), but not the other way around.
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Case-control Studies

In a case-control study, separate samples are selected from cases
(D = 2) and controls (D = 1).

1. Identify two subgroups of the population on the basis of the
presence or absence of D.

2. Take a simple random sample from each of these two subgroups
separately, of size nD=1 and nD=2, respectively

3. Measure subsequently the exposure level E (1 or 2) for
individuals in both random samples

In this case, the joint probability and marginal probability are not
meaningful. For conditional probability, you can estimate
P(E = 1|D = 1), P(E = 2|D = 1),P(E = 1|D = 2), and
P(E = 2|D = 2), but not the other way around.
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Hypergeometric Sampling

In these rare examples, we may encounter data where both the row
totals and column totals are fixed by design.

Even when both sets of marginal totals are not fixed by design, some
statisticians like to condition on them and perform “exact”
conditional inference when the sample size is small and asymptotic
approximations are unlikely to work well.
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Two-by-Two Tables

Many studies compare two groups on a binary response Y , e.g., Y is
Outcome that takes two values, success and failure. The data can be
displayed in a 2× 2 table.

Outcome
Success Failure

Group
1 π1 1− π1
2 π2 1− π2

In this table, π1 and π2 are the probabilities of success for Group 1 for
Group 2, respectively. They are both conditional probabilities:
π1 = πY=1|X=1 = πSuccess|Group=1, π2 = πY=1|X=2 = πSuccess|Group=2.

Risk measures:

Difference of proportions: π1 − π2
Relative risk: π1/π2

Odds ratio: θ = π1/(1−π1)
π2/(1−π2)
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Difference of Proportions

Y
X Success Failure Sample Size
1 p1 1− p1 n1
2 p2 1− p2 n2

The difference of proportions π1 − π2 is estimated by its sample
counterpart p1 − p2. The estimated standard error of p1 − p2 is

SE =

√
p1(1− p1)

n1
+

p2(1− p2)

n2

A large-sample 100(1− α)% Wald CI for π1 − π2 is

(p1 − p2)± zα/2(SE )

To test H0 : π1 = π2, use the z test statistic (Score test)

z =
p1 − p2
SEpooled

=
p1 − p2√

ppooled(1− ppooled)(n−11 + n−12 )

where ppooled = (n1p1 + n2p2)/(n1 + n2).
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[Example] Aspirin and Heart Attacks among Male Physicians

Myocardial Infarction
Group Yes No Total
Placebo 189 10,845 n1 = 11, 034
Aspirin 104 10,933 n2 = 11, 037

We have
p1 = 189/11034 = 0.0171
p2 = 104/11037 = 0.0094

The sample difference of proportions is p1 − p2 = 0.0077. Its SE is

SE =

√
(0.0171)(0.9829)

11034
+

(0.0094)(0.9906)

11037
= 0.0015

So a 95% confidence interval for the true difference π1 − π2 is

0.0077± 1.96(0.0015) = (0.005, 0.011)

Since this interval contains only positive values, we conclude that π1 > π2.

For males, taking aspirin appears to result in a diminished risk of heart

attack.
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Relative Risk

Difference in proportions may be misleading when the proportions are close
to 0 or 1. For example, the difference between 0.01 and 0.001 is the same
as the difference between 0.41 and 0.401 but the ratios are very different.

Relative Risk = π1/π2.

Relative risk is equal to 1 if and only if π1 = π2

Relative risk is estimated by the sample relative risk = p1/p2

A large-sample confidence interval for log(π1/π2) is

log(p1/p2)± zα/2

√
1− p1
n1p1

+
1− p2
n2p2

.

A large-sample (1− α)% confidence interval for π1/π2 is obtained by
exponentiating the above result:

e

{
log(p1/p2)±zα/2

√
1−p1
n1p1

+
1−p2
n2p2

}
.
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[Example] Aspirin and Heart Attacks among Male Physicians

The sample relative risk is

p1
p2

=
0.0171

0.0094
= 1.82

The sample proportion of MI cases was 82% higher for the group taking
placebo.

A large-sample 95% CI for is log(π1/π2) is

log(1.82)± 1.96

√
1− 0.0171

0.0171× 11034
+

1− 0.0094

0.0094× 11037
= (0.361, 0.837)

A large-sample 95% CI for is π1/π2 is

(e0.361, e0.837) = (1.434, 2.309)

The proportion of MI is at least 43.4% higher for the placebo group.
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Odds and Odds Ratio

For a probability of success π, the odds of success is defined as

odds =
π

1− π

It is the ratio of success probability over failure probability.

By algebra, we have

π =
odds

odds + 1

In our 2× 2 table, we have the odds of success in row 1 (Group =1)
as π1/(1− π1) and the odds of success in row 2 (Group =2) as
π2/(1− π2). The ratio of two odds is defined as the odds ratio and
denoted by θ.

θ =
π1/(1− π1)

π2/(1− π2)
=
π1(1− π2)

π2(1− π1)
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Properties of the Odds Ratio

θ = 1 if and only if π1 = π2

θ > 1 implies row 1 has higher odds and the probability of success

θ < 1 implies row 1 has lower odds and the probability of success

The farther away θ is from 1, the stronger the association between
row and column variables.

If the order of the two rows or the two columns are switched, the new
odds ratio is the inverse of the old one

If the row 1 odds is one fourth of the row 2 odds, the odds
ratio is 0.25. If the rows are switched, the odds ratio is 4,
which is equal to 1/0.25

If row variable and column variable are switched, the new odds ratio
equals the old one.

When both π1 and π2 are close to 0, the odds ratio ≈ relative risk.
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When both variables are response variable, the odds ratio can be defined
using joint probabilities:

θ =
π11/π12
π21/π22

=
π11π22
π12π21

Regardless the multinomial distribution over four cells or independent
binomial for the two rows, the odds of row 1 can be estimated by n11/n12
and the odds of row 2 can be estimated by n21/n22. Therefore, the odds
ratio can be estimated by

θ̂ =
n11/n12
n21/n22

=
n11n22
n12n21

When any cell has 0 counts, the sample odds ratio will be 0 or ∞. In
this case, or even when some cells have small counts, one can add 0.5
to each cell and estimate θ by

θ̃ =
(n11 + 0.5)(n22 + 0.5)

(n12 + 0.5)(n21 + 0.5)
.

When computing SE , replace nij by nij + 0.5.

21 / 55



[Example] Aspirin and Heart Attacks among Male Physicians

Myocardial Infarction
Group Yes No Total
Placebo 189 10,845 n1 = 11, 034
Aspirin 104 10,933 n2 = 11, 037

For physicians taking placebo, the estimated odds of MI is

n11/n12 = 189/10845 = 0.0174

For those taking aspirin, the estimated odds of MI is

n21/n22 = 104/10933 = 0.0095

So the sample odds ratio is

θ̂ =
0.0174

0.0095
= 1.832.

The estimated odds of MI for male physicians taking placebo equal
1.83 times the estimated odds for male physicians taking aspirin.

The estimated odds were 83% higher for the placebo group.
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The above calculation is equivalent to

θ̂ =
189× 10933

10845× 104
= 1.832.

Adding 0.5 to each of the four cells, we have another estimate of the
odds ratio

θ̃ =
189.5× 10933.5

10845.5× 104.5
= 1.828.

This estimate is close to what we obtained before θ̂ = 1.832, since
no cell count is small.
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Inference for Odds Ratio

Similar to relative risk, the sampling distribution of odds ratio is highly
skewed to the right (long right tail). A log-transformation of θ makes its
sampling distribution more symmetric.

θ ∈ (0, 1), or log(θ) ∈ (−∞, 0) : negative association
θ = 1, or log(θ) = 0 : no association
θ ∈ (1,∞), or log(θ) ∈ (0,∞) : positive association

The asymptotic distribution of log(θ̂) is N(log(θ), (SE )2), where

SE =

√
1

n11
+

1

n12
+

1

n21
+

1

n22

A large-sample (1− α)% CI for log θ is

log θ̂ ± zα/2(SE )

A large-sample (1− α)% CI for θ is

e{log θ̂±zα/2(SE)}
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[Example] Aspirin and Heart Attacks among Male Physicians

Since θ̂ = 1.832, log(θ̂) = 0.605. The sampling SE for log(θ̂) is

SE =

√
1

189
+

1

10933
+

1

104
+

1

10845
= 0.123

The asymptotic distribution of log(θ̂) is N(0.605, 0.1232).

A 95% CI for log θ is

0.605± 1.96× 0.123 = (0.365, 0.846)

A 95% CI for θ is
(e0.365, e0.846) = (1.44, 2.33)

This interval does not contain 1, we know the null hypothesis H0 : θ = 1

(i.e., there is no association) will be rejected at significance level 0.05. The

true odds seem to be different for the two groups.

25 / 55



Independence

Definition: X (i = 1, 2, . . . , I ) and Y (j = 1, 2, . . . , J) are statistically
independent if the conditional distribution of Y is the same at each
level of X , i.e.,

πj |1 = πj |2 = . . . = πj |I = π+j for all j .

In the 2 × 2 table introduced earlier,

Outcome
Success Failure

Group
1 π1 1− π1
2 π2 1− π2

π1 = π2
Difference of proportions π1 − π2 = 0

Relative risk π1/π2 = 1

Odds ratio θ = π1/(1−π1)
π2/(1−π2) = 1

We have learned all the three tests this far.
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Alternative Definition for Independence

Definition: X (i = 1, 2, . . . , I ) and Y (j = 1, 2, . . . , J) are statistically
independent if and only if

P(X = i ,Y = j) = P(X = i)P(Y = j) for all i and j .

That is,
πij = πi+π+j for all i and j .

The Chi-squared test of independence is developed based on this
definition.
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Expected Frequency and Its Estimator

H0: X and Y are independent versus H1: X and Y are dependent

Recall that H0 implies that, for all (i , j)

Pr(X = i ,Y = j) = Pr(X = i) Pr(Y = j), i.e. πij = πi+π+j .

Denote µij as the expected frequency for cell (i , j). By definition,
µij = E (nij) = nπij . Under the H0, µij = nπi+π+j .

Denote µ̂ij as the estimated expected frequencies under the H0. By
MLE,

µ̂ij = nπ̂i+π̂+j = n
(ni+

n

)(n+j

n

)
=

ni+n+j

n
.

Note that nij is the MLE of µij under H1.
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Tests of Independence

The Pearson Chi-squared statistic (Score test) is

X 2 =
∑
all cell

(observed− expected)2

expected
=
∑
i ,j

(nij − µ̂ij)2

µ̂ij

The Likelihood Ratio Statistic is

G 2 = −2 log

(
Maximum likelihood under H0

Maximum likelihood under H1

)
= 2

∑
i ,j

nij log

(
nij
µ̂ij

)
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Facts About the Tests

X 2 and G 2 are ≥ 0 and 0 is achieved when all nij = µ̂ij .

If H0 is true, X 2 and G 2 are approximately a Chi-squared
distribution for large n with degrees of freedom equal to

df = # of parameters under H1 −# of parameters under H0

= (IJ − 1)− [(I − 1) + (J − 1)]

= (I − 1)(J − 1)

As n increases, X 2 converges to Chi-square faster than does G 2

The p-value is determined by the upper-tail of the distribution

p-value = Pr(χ2
df ≥ X 2)

p-value = Pr(χ2
df ≥ G 2)

The chi-squared approximation is usually decent when {µ̂ij ≥ 5}
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[Example:] Gender Gap in Political Affiliation

Party Identification
Gender Democrat Independent Republican Total

Females n11 = 762 n12 = 327 n13 = 468 n1+ = 1557
Males n21 = 484 n22 = 239 n23 = 477 n2+ = 1200
Total n+1 = 1246 n+2 = 566 n+3 = 945 n++ = 2757

Given the observed counts, we can calculate the expected counts
under H0 by µ̂ij =

ni+n+j

n .

µ̂11 =
1246× 1557

2757
= 703.7

µ̂12 =
566× 1557

2757
= 319.6

µ̂13 =
945× 1557

2757
= 533.7

µ̂21 =
1246× 1200

2757
= 542.3

µ̂22 =
566× 1200

2757
= 246.4

µ̂23 =
945× 1200

2757
= 411.3
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In summary,

Party Identification
Gender Democrat Independent Republican Total
Females µ̂11 = 703.7 µ̂12 = 319.6 µ̂13 = 533.7 n1+ = 1557
Males µ̂21 = 542.3 µ̂22 = 246.4 µ̂23 = 411.3 n2+ = 1200
Total n+1 = 1246 n+2 = 566 n+3 = 945 n++ = 2757

X 2 =
(762− 703.7)2

703.7
+

(327− 319.6)2

319.6
+

(468− 533.7)2

533.7

+
(484− 542.3)2

542.3
+

(239− 246.4)2

246.4
+

(477− 411.3)2

411.3
= 30.1

G 2 = 2

[
762 log

(
762

703.7

)
+ 327 log

(
327

319.6

)
+ 468 log

(
468

533.7

)
+ 484 log

(
484

542.3

)
+ 239 log

(
239

246.4

)
+ 477 log

(
477

411.3

)]
= 30.0

Both have df = (2− 1)(3− 1) = 2. The p-values are, respectively,

P(X > 30.1) = 2.91× 10−7 and P(X > 30.0) = 3.06× 10−7 with X ∼ χ2.

Both p-values are < 0.0001, suggesting association between political party

identification and gender. [R command: 1 - pchisq(30.1, df=2) ]
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Residuals Analysis

Residuals tell how far off are the expected and observed values for each
cell. They tell us which cells drive the lack of fit.

Raw Residual:
nij − µ̂ij

Pearson Residual:

eij =
nij − µ̂ij√

µ̂ij

(
∑
ij

e2ij = X 2),

where the variance of eij tends to be smaller than 1 and leads to
conservative indications of cells having lack of fit.

Standardized Pearson Residuals:

nij − µ̂ij√
µ̂ij(1− pi+)(1− p+j)

,

which adjusts Pearson Residuals using estimated standard error of
nij − µ̂ij under H0. Under H0, standardized Pearson residuals are
approximately N(0,1).
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[Example:] Party Identification by Gender

For the (1, 1) cell,

n11 = 762

µ̂11 = 703.7

p1+ = 1557/2757 = 0.565 and p+1 = 1246/2757 = 0.452

So the standardized residual for this cell is

762− 703.7√
703.7(1− 0.565)(1− 0.452)

= 4.50

Standardized Residuals (in parentheses) for testing independence

Party Identification
Gender Democrat Independent Republican
Females 762 327 468

(4.50) (0.70) (−5.32)
Males 484 239 477

(−4.50) (−0.70) (5.32)
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Linear Trend Alternative to Independence

When variables are ordinal, a test for trend association is common.

Usually, scores are assigned to categories and measure the degree of linear
trend. These scores should reflect the ordering of categories and the
distance between them. Let

scores for rows: u1 ≤ u2 ≤ · · · ≤ uI .

scores for columns: v1 ≤ v2 ≤ · · · ≤ vJ .

With scores, the sample correlation r between row and column variables
can be computed by

r =

∑
i,j(ui − ū)(vj − v̄)pij√

[
∑

i (ui − ū)2pi+][
∑

j(vj − v̄)2p+j ]
,

where ū =
∑

i uipi+ is the mean of row scores and v̄ =
∑

j vjp+j is the
mean of column scores. The population version of r is ρ.

For testing H0 : ρ = 0 versus H1 : ρ 6= 0, a test statistics is M2 = (n− 1)r2,
which is a Chi-squared distribution with df = 1 under a large sample.
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[Example:] Infant Malformation and Mother’s Alcohol Consumption.
Maternal drinking = covariate, and congenital malformation = response.

Alcohol Malformation Percentage of Present
Consumption Absent Present Total

npresent
Total × 100

0 17,066 48 17,114 0.28
< 1 14,464 38 14,502 0.26
1–2 788 5 793 0.63
3–5 126 1 127 0.79
≥ 6 37 1 38 2.63

Ignoring the ordering in alcohol consumption, one can use X 2 or G 2

statistic
X 2 = 12.1 and G 2 = 6.2

Each has (5− 1)(2− 1) = 4 degrees of freedom. The p-value is 0.02 for
X 2 and 0.19 for G 2. Chi-squared distribution does not work well because
of the small cell counts (i.e., the two 1s)

The percentage present indicates a possible trend: malformations are more

likely at higher levels of alcohol consumption. If we assign the following

scores to the row categories v1 = 0, v2 = 0.5, v3 = 1.5, v4 = 4.0, v5 = 7,

then M2 = 6.57 and p-value = 0.01.
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Extra Power with Ordinal Tests

The X 2 and G 2 tests are omnibus: they detect any types of
association between X and Y . Their df is (I − 1)(J − 1).

The M2 test is powerful for detecting association in the
direction implied by the scores. Its df is 1.

The smaller df of M2 test makes it more powerful if the scores
are “correct”.

M2 test suffers in power if the scores are “incorrect”.

For small to moderate sample sizes, Chi-squared distribution
approximation works better for smaller df .
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Choice of Scores

For most data set, different choices of scores has little impact on M2

statistic. This may not be the case when data are highly unbalanced:
some categories have many more observations than others

Adding or multiplying a number to scores does not change the M2

test statistic: scores (1, 2, 3, 4, 5) yields the same M2 test statistic as
(0, 1, 2, 3, 4) or (2, 4, 6, 8, 10)

An alternative is to assign the average rank of each category as its
score. This score is called the Midrank.

Malformation Cum.
Alcohol Absent Present Total Total Midrank
0 17,066 48 17,114 17,114 1

2 (1 + 17114) = 8557.5
< 1 14,464 38 14,502 31,616 1

2 (17115 + 31616) = 24365.5
1–2 788 5 793 32, 409 1

2 (31617 + 32409 = 32013
3–5 126 1 127 32,536 1

2 (32410 + 32536) = 32473
≥ 6 37 1 38 32,574 1

2 (32537 + 32574) = 32555.5

Sensitivity analysis

Personal judgment
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Nominal-Ordinal Tables

In the previous example, we are testing for a linear tread in
proportions of “successes”. The trend test M2 under this I × 2
tables is also called “Cochran-Armitage Trend Test”.

The M2 can not be applied to the case with a nominal variable
with more than 2 levels.

Generally, if X is nominal, one can use a ANOVA-type of
analysis to compare the mean scores among the categories of X .
This test has df = I − 1. When I = 2, it is equivalent to M2.
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So far...

Two-way contingency table: row variable X and column variable Y .

Feature Study design Description Valid estimator
Sampling scheme = Multinomial

n is fixed Cross-sectional
Draw a sample of n Joint/marginal/conditional prob
subjects from a population. Rel risk, diff of props, odds ratio.

X 2/G 2 test for indep, Linear trend test.
Sampling scheme = Product Multinomial

Row margins are fixed Cohort study
Draw n1+ from cohort one, Conditional probability P(Y |X )
n2+ from cohort two, and Rel risk, diff of props, odds ratio.
follow-up to see results of Y.

Col margins are fixed Case-control
Draw n+1 from disease status, Conditional probability P(X |Y )
n+2 from normal persons, and Odds ratio
recall levels of X

Sampling scheme = Poisson
Nothing is fixed May be analyzed as if they were multinomial if n is not of interest.
Sampling scheme = Hypergeometric
Both row and col margins are fixed Used for small sample inference.
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Three-way Tables

It is possible to have three categorical variables, X , Y , and Z , then the
data can be summarized by a three-dimensional table with counts {nijk}.

X : i = 1, 2, . . . , I

Y : j = 1, 2, . . . , J

Z : k = 1, 2, . . . ,K

Note, in this section, we still study the association between X and Y . The
Z is considered as an extraneous variable that are not intentionally for
studying in the experiment.

Loglinear model (Chapter 7) can treat Z in a similar/comparable way to X
and Y , and covers more type of associations.

Specifically, 2× 2× K table.
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Partial Tables

A table of the XY counts at fixed levels of Z , showing the association of X
and Y while controlling for Z .

The associations in partial tables are called conditional associations,
because different value of Z may lead to different association.

[Conditional Odds Ratios] of X and Y given Z are odds ratio for partial
tables, denoted by θXY (k). It can be estimated by

θ̂XY (k) =
n11kn22k
n12kn21k
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Marginal Tables

Collapse all these partial tables that the count in each cell of this XY
marginal table is the sum of the counts in the corresponding cells of all
partial tables. Counts are denoted by {nij+}.

The XY marginal table ignores Z . The associations in the marginal table is
called marginal associations.

[Marginal Odds Ratio] of X and Y can be estimated by

θ̂XY =
n11+n22+
n12+n21+

43 / 55



Data Format: Kidney Stone Treatment

Treatment A Treatment A Treatment B Treatment B
Stone and Success and Failure and Success and Failure
Small 81 6 234 36
Large 192 71 55 25

If X =Treatment (A,B), Y = Response (Success, Failure), and Z = Stone
size (Small, Large).

Partial Tables
Stone Treatment Response Y

Z X Success Failure

Small
A 81 6
B 234 36

Large
A 192 71
B 55 25

Marginal Tables
Treatment Response Y

X Success Failure
A 273 77
B 289 61

n11+ = 81 + 192 = 273

n12+ = 6 + 71 = 77

n21+ = 234 + 55 = 289

n22+ = 36 + 25 = 61

44 / 55



Confounding Variable and Spurious Association

The Z may have a confounding effect on the association between X and Y .

Confounding variable: an extraneous variable that correlates with both the
dependent variable and independent variable.

Spurious association: the association between two variables that is induced
by the presence of a confounding variable. That is, controlling for the
confounding variable, the two variables are independent.

Observation: As ice cream sales increase, drowning deaths rate increases.

Question: Association between ice cream sales and rate of drowning death?

In reality, a heat wave may have caused both. Ice cream is sold during the
hot summer months at a much greater rate than during colder times, and
it is during these hot summer months that people are more likely to engage
in activities involving water, such as swimming. The increased drowning
deaths are simply caused by more exposure to water-based activities, not
ice cream.
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Conditional Independence versus Marginal Independence

Conditional Independence

If X and Y are independent in each and every partial table, then X
and Y are said to be conditionally independent, given Z .

In a 2× 2× K table, conditional independence means

θXY (1) = θXY (2) = . . . = θXY (K) = 1

Marginal independence of X and Y does not imply conditional
independence. (Spurious Association)

Conditional independence of X and Y , given Z , does not imply
marginal independence of X and Y .
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[Example] Conditional independence of X and Y , given Z , does not
imply marginal independence of X and Y .

Clinic Treatment Response Y
Odds ratio

Z X Success Failure

1
A 18 12

θ̂XY (1) = 18×8
12×12 = 1

B 12 8

2
A 2 8

θ̂XY (2) = 2×32
8×8 = 1

B 8 32

Marginal
A 20 20

θ̂XY = 20×40
20×20 = 2

B 20 40

Here “Clinic” is a confounding factor and this marginal association is
spurious association due to “Clinic”.
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Simpson’s Paradox

The result that a marginal association can have different direction from the
conditional associations is called Simpson’s paradox.

Use the previous kidney stone treatment data as an example,

Stone Treatment Response Y
Odds ratio

Z X Success Failure

Small
A 81 6

θ̂XY (1) = 81×36
6×234 = 2.08

B 234 36

Large
A 192 71

θ̂XY (1) = 192×25
71×55 = 1.23

B 55 25

Total
A 273 77

θ̂XY = 273×61
77×289 = 0.75

B 289 61

Treatment A is more effective when used on small stones, and also when
used on large stones.

Treatment B is more effective when considering both sizes together.

The stone size is a confounding variable that causes Simpson’s paradox.
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Simpson’s Paradox (cont.)

In the above example:

Doctors tend to give the severe cases (large stones) the better
treatment (A), and the milder cases (small stones) the inferior
treatment (B).

The success rate is more strongly in influenced by the severity of the
case than by the choice of treatment.
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In Presence of Confounding

We see that without considering confounding variables, it is possible
to introduce spurious association and observe Simpson paradox.

Stratified analysis is always a strategy for examining the
association between X and Y while adjusting for effect of Z .
This will lead to multiple conditional associations for each
individual stratum of Z .

If the odds ratios across different strata are relatively
consistent, is there an overall measurement of the association
that can be used?
–Yes, Mantel-Haenszel (MH) Methods.
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Mantel-Haenszel Methods: K 2× 2 tables

For the kth level of Z , k = 1, . . . ,K , the data is

Diseased Non-diseased Totals
Exposed n11k n12k n1+k

Unexposed n21k n22k n2+k

Totals n+1k n+2k n++k

The Mantel-Haenszel method

assumes that there is a true odds ratio which is consistent across k

provides a pooled estimate of the common odds ratio. In essence, it is
a weighted average of the odds ratios from the individual strata

Note that it only makes sense to report the Mantel-Haenszel estimate if

the exposure-disease relationship is consistent across the strata.

51 / 55



Mantel-Haenszel Estimate of Odds Ratio

The Mantel-Haenszel estimate of the odds ratio is

θ̂MH =

∑K
k=1 n11kn22k/n++k∑K
k=1 n21kn12k/n++k

with estimated standard error computed on the log-scale as

SE (ln[θ̂MH ]) =

[ ∑
PkRk

2(
∑

Rk)2
+

∑
PkSk +

∑
QkRk

2
∑

Rk

∑
Sk

+

∑
QkSk

2(
∑

Sk)2

]1/2
where

Pk = (n11k + n22k)/n++k

Qk = (n12k + n21k)/n++k

Rk = n11kn22k/n++k

Sk = n12kn21k/n++k
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Mantel-Haenszel Estimate of Relative Risk

The Mantel-Haenszel estimate of the relative risk is

R̂RMH =

∑K
k=1 n11kn2+k/n++k∑K
k=1 n21kn1+k/n++k

.

with estimated standard error computed on the log-scale as

SE (ln[R̂RMH ]) =

{∑
(n1+kn2+kn+1k − n11kn21kn++k)/n2++k

[
∑

n11kn2+k/n++k ][
∑

n21kn1+k/n++k ]

}1/2

Mantel-Haenszel estimates can be obtained in SAS.

It is important to keep in mind that these pooled risk estimates
should only be reported if the risk is consistent (homogeneous) across
the levels of the confounder.

Apply test of homogeneity before using this combined estimate.
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Homogeneous Association and Breslow-Day Test

If X and Y are binary, there is homogeneous XY association when

θXY (1) = θXY (2) = · · · = θXY (K)

The alternative is, at least one pair θXY (k) 6= θXY (l).

Test of Homogeneity: the Breslow-Day Statistic

X 2
BD =

K∑
k=1

(n11k − µ11k)2

Var(n11k)
∼ χ2

K−1

The two-sided p-value is p = Pr[χ2
K−1 ≥ X 2

BD ]

If the p-value is significant, then the null hypothesis is rejected, and it
is concluded that the odds ratios are not homogeneous across strata.
Specifically, it is not appropriate to report the Mantel-Haenszel
pooled estimate of the odds ratio

The test of homogeneity should be performed before deciding to
report the pooled odds ratio
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CMH Test for Conditional Independence

A special case for homogeneous association is when θ = 1, i.e., the
conditional independence. Here we introduce one test that is applicable to
this case, the Cochran-Mantel-Haenszel test that takes test statistic as

X 2
CMH =

[∑K
k=1(n11k − µ11k)

]2
∑K

k=1 Var(n11k)
∼ χ2

1,

where

µ11k =
n1+kn+1k

n++k
,

Var(n11k) =
n1+kn2+kn+1kn+2k

n2++k(n++k − 1)
.

The 2-sided p-value is p = Pr[χ2
1 ≥ X 2

CMH ].

If some θXY (k) < 1 and other θXY (k) > 1, then the CMH is NOT an

appropriate test; that is, the test works well if the conditional odds ratios

are in the same direction.
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