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Objectives

Key concepts for GLM:

Three components of GLM

Random Component, Systematic Component, Link Function

Fitting GLM

Newton-Raphson Algorithm, Fisher Scoring, IRWIS

GLM Diagnostics

Residuals: Person Residuals, Standardized/Adjusted Residuals,
Deviance Residuals
Hypothesis testing for coefficients: Wald Test, Score Test,
Likelihood Ratio Test
Model discrepancy/Goodness of fit: Deviance, Pearson X 2.

Reading: Agresti (2002), Section 3.1, 3.4 - 3.5
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Review: Simple Linear Regression Model

Data: (x1, y1), . . . , (xn, yn) for n subjects

Objective: model the expected value of a continuous variable, Y , as
a linear function of the continuous predictor, X. Denote the mean of
Yi as µi , then µi = E (Yi ) = β0 + β1xi .

Model structure: Yi = µi + εi

Model assumption: Y1, . . . ,Yn are independent and normally
distributed. εi ∼ N(0, σ2).

Model fitting: Ordinary Least Square (OLS), find β̂0 and β̂1 such that∑n
i=1(yi − β̂0 − β̂1xi )2 is minimized. Then µ̂i = β̂0 + β̂1xi .

Model fit: R2, residual analysis, F -statistics

Model selection: stepwise, AIC, BIC, . . .

Question: how to handle the case with binary or count data as the
response, Y.
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Generalized Linear Models: Three Components

Data: (xi , yi ), i = 1, . . . , n for n independent subjects, where
xi = (xi1, . . . , xip) is a vector that xij is the j-th variable for the i-th subject.

Generalized Linear Models (GLM) refers to a larger class of models where
the response variable yi is assumed to follow an exponential family
distribution with mean µi that is some function of β0 + β1xi1 + . . .+ βpxip.

Three Components:

Random components: specify a probability distribution from the
exponential family for Y . Denote the mean of Yi as µi .

Systematic components: specify a linear combination of covariates
ηi = x ti β, where x ti β = β0 + β1xi1 + . . .+ βpxip.

Link function g(·): specify how the mean of the specified probability
distribution (random component) relates to the linear predictor
(systematic component). That is, g(µi ) = ηi .
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Exponential Family

f (y ; θ, φ) = exp

{
yθ − b(θ)

a(φ)
+ c(y , φ)

}
θ: Canonical/Natural parameter. If g(µ) = θ, then the link is called
canonical link.

φ: Dispersion/Scale parameter, which is fixed and constant over
observations. Because φ is known, we can also write f (y ; θ). If φ is
unknown, then we will have exponential-dispersion family, or
two-parameter exponential family.

a(φ) is commonly of the form a(φ) = φ/w , where w is a known prior
weight that may vary from observation to observation

Properties: if y ∼ f (y ; θ, φ), then

Mean of y is E (y) = b′(θ)

Variance of y is Var(y) = b′′(θ)a(φ). We also denote the b′′(θ) as
V (θ), the variance function.
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Link Function g(·)

For one random component, there are possibly multiple choices for g(·).

[Example] For the binary response, we can specify binomial distribution as
the random component and the mean is π(x). For the link function, we
can have

Identity link: π(x) = α + βx . Here the β corresponds to the change
in the probability per unit change in x . The problem is that this link
may lead to the π(x) outside the (0, 1) range.

Logit Link: log(π(x)/(1− π(x))) = α+ βx . This is the canonical link
for binomial random component.

Probit Link: Φ−1(π(x)) = α + βx , where Φ−1 is the inverse of the
cumulative probability function of normal random variable.

Complementary log-log link: log(− log(1− π(x))) = α + βx .

Except the identity link, the rest links project the π(x) from (0,1) to the
real line (−∞,∞). It is often convenient to use a canonical link. But
convenience does not imply that the data actually conform to it.
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Examples of Exponential Family

To validate an exponential family distribution, the key is to be able to
format the distribution function into the above form. We will use the
properties of log and exp: exp(log(a)) = log(exp(a)) = a

log(a× b/c) = log(a) + log(b)− log(c).
[Example] Possion Distribution

f (y ; θ) =
λye−λ

y !

= exp

(
log

(
λye−λ

y !

))
= exp (y log λ− λ− log y !)

Hence,

θ = log λ, therefore, λ = eθ

b(θ) = λ, that is, b(θ) = eθ

µ = b′(θ) = eθ = λ

Therefore, the canonical link is log(µ)
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[Example] Binomial Distribution

For the Binomial case, the distribution of y = s/n is used, where s is the
number of success that s ∼ Binom(n, π).

f (y ; θ) =

(
n

ny

)
πny (1− π)n−ny =

(
n

ny

)(
π

1− π

)ny

(1− π)n

= exp

(
log

((
n

ny

)(
π

1− π

)ny

(1− π)n
))

= exp

(
log

(
n

ny

)
+ ny log

(
π

1− π

)
+ n log(1− π)

)

= exp

log

(
n

ny

)
+

y log
(

π
1−π

)
+ log(1− π)

1/n


Hence,

θ = log
(

π
1−π

)
, therefore, π = exp θ/(1 + exp θ)

b(θ) = − log(1− π) = log(1 + θ)

µ = b′(θ) = exp θ/(1 + exp θ) = π

Therefore, the canonical link is logit(µ) = log(µ/(1− µ))
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Advantages of GLM

We do not need to transform the response Y to have a normal
distribution

The choice of link is separate from the choice of random
component thus have more flexibility in modeling

The models are fitted via Maximum Likelihood estimation; thus
optimal properties of the estimators.

[Caution]

The normal linear regression model has an additive error, so we may
write y = β0 + β1x + ε, where ε is the random error.

However, GLM does not have this structure. For example, in the
logit model, we cannot write log(π/(1− π)) = β0 + β1x + ε. For
this model, the random error is contained in the random component
y ∼ n−1Binom(n, π), and g(µ) = η is a purely functional
(deterministic) relationship.
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Relation to The Rest of The Chapters

Ranodm Link Covariates
Model Component Function Type Chapter
Linear Regression Normal Identity Mixed Classic
Logistic Regression Binomial Logit Mixed Ch 4 and 5
Multinomial Multinomial Generalized Mixed Ch 6
Loglinear Model Poisson Log Categorical Ch7
Poisson Regression Poisson Log Mixed Ch 3.3

The above models concern more on the independent observations.

For the correlated (repeated, matched, etc) observations, we will
study them on Ch 8, 9, and 10.
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Fit GLM

GLM is estimated by MLE.

From the random component → liklihood function l =
∏

f (yi ; θ) →
log-likelihood function L =

∑
log f (yi ; θ). The rest of the work is to

maximize L. Equivalently, to solve the Score equations

Uj(β) =
∂

∂βj
L, j = 1, 2, . . . , p.

Because L is defined via θ, chain rule will be applied to get the Uj(β).

Uj(β) =
n∑
i

∂ log Li
∂θi

∂θi
∂µi

∂µi

∂ηi

∂ηi
βj

The Uj(β) are called scores and can be written in the vector form.
U1(β)
U2(β)
. . .
Up(β)


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Algorithms

Newton-Raphson algorithm. is an iterative algorithm. As an illustration, to
solve t(x) = 0. At the m-th step, denote t ′(x (m−1)) as the derivative of

function t evaluated at x (m−1). From t ′(x (m−1)) = t(x (m))−t(x (m−1))
x (m)−x (m−1) and use

t(x (m)) = 0, we can obtain the updated x (m) = x (m−1) − t(x (m−1))
t(x (m))

.

In our case, we have p-dimensional vector to estimate, we will use the
matrix form of inversion. Note that we will need first-order derivative of
score functions, which is second derivative of L.

Newton-Raphson: uses the observed derivative of scores ∂2L
∂βiβj

Fisher scoring: uses the expected derivative of scores E ( ∂2L
∂βiβj

)

Fisher scoring algorithm can be written as an iterative re-weighted
least squares (IRWLS).

The expected and observed second derivative of scores are the same under

canonical links. The IRWLS form suggests diagnostic techniques to check

the appropriateness of the model.
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Measuring Goodness of Fit

Null model: one parameter, representing a common mean for all yi s. That
is, for all subjects i , µ̂i =

∑n
i=1 yi/n

Full/Saturated model: n parameters, no errors, the mean matches the data
exactly. That is, µ̂i = yi .

It is often convenient to express the log-likelihood function in terms of
mean value parameter µ rather than the canonical parameter θ. So the
log-likelihood functions for the full models are L(y , φ; y).

Most often, we have a model M between these two extreme. We may
write it as L(µ̂, φ; y).

Deviance = 2 [L(y , φ; y)− L(µ̂, φ; y)]

This is also the test statistic for the hypothesis testing that all
parameters that are in the full model but not in the model M are 0s.
It is a χ2 with df = (n− number of parameters in model M).

Pearson’s χ2 =
∑N

i=1

(yi − µ̂i )
2

V̂ar(yi )
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Residuals

Pearson residuals:

rPi =
yi − µ̂i√
V̂ar(yi )

Standardized/Adjusted residuals:

rSi =
yi − µ̂i

SE of (yi − µ̂i )

Deviance residuals:

rDi = sign(yi − µ̂i )
√
di ,

where di is the contributions of the ith unit in the Deviance. That
is, di = 2 [L(yi , φ; y)− L(µ̂i , φ; y)] and Deviance =

∑N
i=1 di .
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Inference for β

β =

(
β1
β2

)
q × 1
(p − q)× 1

If we would like to test the second part of β, that is, H0 : β2 = β0
2

Likelihood Ratio Test = 2
(
L(β̂1, β̂2)− L(β̂0

1 , β
0
2)
)

, where β̂1 and β̂2

are obtained from MLE under the alternatives, and the β̂0
1 is the MLE

under the null that β2 = β0
2 .

Wald Test =
(
β̂2 − β0

2

)′ (
Cov(β̂2)

)−1 (
β̂2 − β0

2

)
Score Test = U2(β0

2)′
{
Cov(U2(β0

2))
}−1

U2(β0
2), where U2(β2)

correspond to the score function for the part of β2. That is,

U(β) =

(
U1(β1)
U2(β2)

)
q × 1
(p − q)× 1

All three tests are χ2 with df = (p − q) under large samples. For small

samples, the likelihood ratio test is more reliable.
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Model Diagnostics

Plot the residuals on the vertical axis versus the linear predictor η on
the horizontal axis.

We hope to see something like a “horizontal band” with mean
≈ 0 and constant variance as we move from left to right.

Curvature in the plot may be due to a wrong link function or
the omission of a nonlinear (e.g. quadratic) term for an
important covariate.

Non-constancy of range suggests that the variance function
may be incorrect.

For binary responses, this plot is not very informative; all the points
will lie on two curves, one for y = 0 and the other for y = 1.
However, the plot may still help us to find outliers.
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Plot residuals versus individual covariates.

Again, we hope to see something like a “horizontal band”.

Curvature in this plot suggests that the x-variable in question
ought to enter into the model in a nonlinear fashion. For
example, we might add a quadratic term x2 or consider other
transformation

√
x .

Plot the absolute residuals with fitted values µ, to check the
appropriateness of variance function.

If there is no trend, the variance function is probably okay.

An increasing trend (positive slope) suggests that the variance
function is increasing too slowly with the mean; for example,
V (µ) = µ might have to be replaced with V (µ) = µ2.
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Checking the link function.

The simplest way to check the link function is to plot the final value
of the working variate z against the linear predictor η. The plot
should resemble a straight line. Curvature in this plot suggests that
the link function is not appropriate.

For binary data, this plot is uninformative.

Hinkley (1985) suggests the following test: After fitting the GLM,
calculate η2 and then try adding it to the model as a covariate. If
this covariate is significant, then there is a problem. Significance in
this test could be caused by a wrong link function, a wrong scale for
one or more predictors, or both.
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