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Objectives

In this part, you will learn the following models

Poisson regression for count data

Poisson regression for rate data

Models for handling overdispersion

Key
Understand count data an rate data

Interpretation of prediction model and estimated coefficients

Testing and CI for the coefficients and means

Understand different link functions: log link and identity link

Understand different random component for the count data: Poisson
and Negative Binomial

Detection for overdispersion

Reading: Agresti (2002), Section 3.3
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Count Data

Poisson regression is perhaps the second most common GLM, after
logistic regression. It applies when the response is a count, such as
the number of events occurring in time or space.

For example,

Y = number of parties attended in the past month

Y = number of imperfections on each of a sample of silicon
wafers used in manufacturing computer chips

In epi studies, count data is a common data type that naturally
arises from studies investigating the incidence or mortality of disease.

Example used in this lecture: Horseshoe Crab Data. See description
in SAS code PoissonModel.

3 / 12



Poisson Distribution

The density function for a Poisson distribution is

Pr(Y = y) =
µy

y !
exp{−µ}, µ > 0, y = 0, 1, 2, . . .

= exp{−µ+ y log(µ)− log(y !)}

The mean and variance of Y are

E (Y ) = Var(Y ) = µ

That is, for Poisson distributions, the variance equals the mean.
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Poisson Regression with Log Link

For a single explanatory variable x , the Poisson loglinear model is

logµ = α + βx ,

which implies

µ = exp(α + βx) = eα(eβ)x

The mean of Y at x + 1 equals the mean of Y at x multiplied by eβ :

µ(x + 1)

µ(x)
=

eα(eβ)x+1

eα(eβ)x
= eβ → µ(x + 1) = eβ · µ(x).

Hence, a 1-unit increase in x has a multiplicative impact of eβ on µ.

If β = 0, then eβ = 1: the mean of Y does not change as x changes

If β > 0, then eβ > 1: the mean of Y increases as x increases

If β < 0, then eβ < 1: the mean of Y decreases as x increases
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Poisson Regression with Identity Link

For a single explanatory variable x , the Poisson model with identity link is

µ = α + βx

The estimated µ can be negative.

The mean of Y at x + 1 equals the mean of Y at x plus β:

µ(x +1)−µ(x) = α+β(x +1)−(α+βx) = β → µ(x +1) = µ(x)+β.

Hence, a 1-unit increase in x has an additive effect of β on µ.

If β = 0: the mean of Y does not change as x changes

If β > 0: the mean of Y increases as x increases

If β < 0: the mean of Y decreases as x increases
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Overdispersion: Greater Variability than Expected

Count data often vary more than we would expect if the response
distribution truly were Poisson.

Example: Female Horseshoe Crabs Data. In the following table, the
variances are much larger than the means, whereas Poisson
distributions have identical mean and variance
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The phenomenon of the data having greater variability than
expected for a GLM is called overdispersion

Common causes of overdispersion:

Heterogeneity among subjects: some important variables are not
included. For example, crabs having a certain fixed width are a
mixture of crabs of various weights, colors, and spine conditions.
Data are not identically distributed
Data are clustered/correlated (will discuss this later)

Overdispersion is not an issue in ordinary regression models
assuming normally distributed Y , because the normal has a
separate parameter from the mean (i.e., the variance, σ2) to
describe variability

For Poisson distributions, the variance equals the mean.
Overdispersion is common in applying Poisson GLMs to counts

Overdispersion is also a concern for logistic regression

8 / 12



Dealing with Overdispersion - Quasilikelihood

When overdispersion is evident, it’s usually handled in one of the two ways.

1. By assuming Var(y) = φµ and estimating the scale parameter φ. This
This approach, where you modify the variance function directly and do not
actually specify a distribution, is then a quasilikelihood model.

φ is usually estimated by the method of moment estimator
φ̂ = X 2/(n − p), where X 2 is the Pearson’s fit statistics. This
χ2-based estimator is a consistent estimator of φ.

It’s also possible to estimate φ by a deviance-based estimator
G 2/(n − p). However, this estimator is not consistent.

β̂Quasi = β̂Poisson, SE (β̂Quasi ) =

√
φ̂× SE (β̂Poisson).

Disadvantage: : Lacks a log-likelihood, and prevent you from using any of
the likelihood-based tools: likelihood ratio tests, AIC/BIC, deviance
explained, deviance residuals.
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Dealing with Overdispersion - Negative Binomial

2. By changing the response distribution to negative binomial (NB), which
is more dispersed than the Poisson.

Let p be the probability of “success” in a Bernoulli trial. In a sequence of
Bernoulli trials, the number of failures in a sequence of Bernoulli trials
before k successes follows a negative binomial distribution, NB(k, p).

The mean is E (Y ) = (1− p)k/p = µ

The variance is Var(Y ) = (1− p)k/p2 = µ+ Dµ2, where D = 1/k is
the dispersion parameter.

NB distribution can be obtained by a two-stage hierarchical process:

Z ∼ Gamma(k,k),

Y |Z ∼ Poisson(((1− p)k/p)× Z ),

then, Y ∼ NB(k, p)
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Rate Data

Previously, we focus on the count data Y . We may also be interested in
the rate data, Y /t, where t is an interval representing time, space, or
other grouping.

Rate data is common under the case of varying exposure. In epi study, a
commonly used rate is per person-years.

For example, the following data show the survival of patients after
heart-valve replacement surgery. The exposure is the total number of
patient-follow up months. In this example, it makes more sense to model
the mean death rate per patient-month.

Age Type Exposure Death
Under 55 Aortic 1259 4

Mitral 2082 1
Above 55 Aortic 1417 7

Mitral 1647 9

Example used in this lecture: British Train Accidents O Data. See
description in SAS code PoissonModel.
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Count Regression for Rate Data

Rate data can be modelled with Poisson regression by using an offset.

The sample rate is Y /t. The expected value of the rate is µ/t with
µ = E (Y ). A loglinear model for the expected rate has form

log(µ/t) = α + βx

which implies
log(µ) = log(t) + α + βx

This model looks like a regular Poisson regression but has an offset
term log(t) whose coefficient is known, which is 1

The interpretation of coefficients will stay the same except you can
talk about the change in rate, or interpret for the counts but you also
need to multiple counts by t.

The expected number of outcomes satisfies

µ = t exp(α + βx)

The mean µ is proportional to t, with proportionality constant
depending on the value of the explanatory variable. For a fixed value
of x , doubling the t also doubles the expected number µ 12 / 12
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