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Objectives

In this part, you will learn the following models

Simple logistic regression with one continuous x (Ungrouped data)

Logistic regression for contingency table (Grouped data)

Multiple logistic regression (Mixed types of covariates)

Key

Logistic model and its advantage on modeling binary response

Estimation, inference, and interpretation for slope parameter

Estimation and inference for the predicted probability

Understand interaction in logistic regression

Summarizing effects in logistic regression

Reading: Agresti (2002), Section 4.1 - 4.5, Section 5.1 and 5.2
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Introduction

Logistic regression is the most popular regression techniques for
modeling dichotomous (binary) dependent variables.

For each observation, the dependent variable is simply either equal
to 1 (the event) or 0 (the non-event), e.g. in epi studies,

Dead or alive

Diseased or non-diseased

Exposed or unexposed

Incident case or control
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Measures of occurrence of an event

Pr(Event) = Pr(Y=1) = π

Odds (Event) = Pr(Event)/(1− Pr(Event)), briefly just use odds.

That is , odds = π/(1− π)⇔ π = odds/(odds + 1)

If π is very small, the odds and π are similar.

If 0 < π < 0.5⇔ 0 < odds < 1

If 0.5 < π < 1⇔ 1 < odds <∞

Questions: How to evaluate covariates’ effect on π or odds?
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Crab Data

Previously, we have analyzed this data using Poisson model to study the
association of number of satellites with the width of female crabs.

Now we dichotomize the count into a flag that takes two values:

1, if has at least 1 satellite

0, if there is no satellite

The new goal is the study the effect of width on the probability of having
at least 1 satellite.
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Crab Data - Estimating Probability
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Simple Logistic Regression

Response variable Y = 0 or 1.

One explanatory variable X .

Assume Y has a binary distribution with parameter π = P(Y = 1),
which depends on the value of x . In this case, denote it as π(x).

Logistic regression model:

logit[π(x)] = log

(
π(x)

1− π(x)

)
= α + βx

That is, the logit of “success” probability has a linear form in x .

Equivalently,

π(x) =
eα+βx

1 + eα+βx
=

1

1 + e−(α+βx)
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Plot of π(x) Function
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Plot of π(x) Function
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Properties of π(x) function

The curve for π(x) is S-shaped , nonlinear rather than linear in x .

π(x) = 1
1+e−(α+βx) is monotone in x .

If β > 0, then π(x) increases as x increases.
If β < 0, then π(x) decreases as x increases.

If β = 0, then π(x) = 1/(1 + e−α) is constant in x .

If π(x) = 0.5, then x = −α/β for simple logistic regression. This x
is called median effect level and denoted as EL50
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Odds Ratio Interpretation

Recall that we have

log

(
π

1− π

)
= α + βx

Therefore,

odds =
π

1− π
=

{
eα+βx at x

eα+β(x+1) = eβeα+βx at (x + 1)

⇒ odds at (x + 1)

odds at x
= eβ

More generally,

⇒ odds at (x + ∆x)

odds at x
= eβ∆x

β is the change in the log odds when x increases in 1-unit.
eβ is the multiplicative effect on odds when x increases by
1-unit, which is also the odds ratio at x + 1 versus at x .

11 / 38



Linear Approximation Interpretation

Most of us do not think naturally on a logit (logarithm of the odds)
scale, so we need to consider alternative interpretations.

Curve can be approximated by a straight line describing rate of
change in π(x) at a fixed value of x . Slope is βπ(x)(1− π(x)).

at x with π(x) = 0.5, slope is 0.25β

at x with π(x) = 0.1 or 0.9, slope is 0.09β

Steepest slope at the median effect level where π(x) = 0.5

Interpretation:

The incremental rate of change in the fitted probability at x is
β̂π̂(x)(1− π̂(x)).

(For positive β̂) The estimated probability increases at the rate
of β̂π̂(x)(1− π̂(x)) per 1-unit increase in x .
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Programs

SAS
Proc logistic data=crab descending;

model flag = width;
run;

Proc genmod data=crab descending;
model flag = width / dist=binomial;

run;

If the data are coded 1 for disease and 0 for non-disease then the
descending option is required to force SAS to estimate Pr[Y = 1|x ]
rather than the default of Pr[Y = 0|x ]

Both methods are based on maximum likelihood ratio estimation.

R
fit = glm(flag ∼ Width, family=binomial, data=crab)
summary(fit)
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Why Ordinary Least Square (OLS) Estimation is not recommended?

Another possible method of fitting the model involves a transformation on
the p value to its logit. From the model log(p/(1− p)) = α+ βx , the logit
is a linear function in the coefficients (α, β) and therefore it is possible to
apply least square estimation. Although the transformation succeeds in
linearizing the response function, two other problems remain.

Since the true probability π is unknown, the values of the response
logit are also unknown. Therefore, we must obtain estimate of the
logit for each combination of the independent variables. This means
we must have replicates for each of such combination, which is often
rare in practical settings.

Another issue is the concern of unequal variances. The variance of
the response relates to p(1− p) which is further depend on the x .
That is, the regression errors are heterogeneous.
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Crab Data - Model Fit

Y =

{
1 if at least one satellite

0 if no satellite

X = Width

Estimated model:

logit(π̂(x)) = −12.35 + 0.497x

Or,

π̂(x) =
exp(−12.35 + 0.497x)

1 + exp(−12.35 + 0.497x)

β̂ > 0, so π̂ ↑ as x ↑
The median effect level EL50 = − α̂

β̂
= 12.35/0.497 = 24.85.

This is where the function of π(x) has the steepest slope.
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Crab Data - Model Fit (cont.)

At x = 26, the estimated probability is

π̂(26) =
exp(−12.35 + 0.497× 26)

1 + exp(−12.35 + 0.497× 26)
= 0.64

At x = 26, the estimated slope of the π(x) is

β̂π̂(26)(1− π̂(26)) = 0.497× 0.64× (1− 0.64) = 0.115

For female with crabs with width 26 cm, the estimated
probability of having at least one satellite increases at the rate
of 0.11 per 1 cm increase in width.

e β̂ = e0.497 = 1.64
If the width increases by 1 cm, the estimated odds increase by a
factor 1.64. Or the multiplicative effect on odds associated with
1 cm increase in width is 1.64.
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Inference for Simple Logistic Regression

MLE β̂ is approximately normal for large samples.

Confidence interval: Wald (1− α) CI for β is β̂ ± zα/2SE(β̂).

[Crab data]:

95% CI for β: 0.4972± 1.96× 0.1017 = (0.2979, 0.6965)

95% CI for eβ: (e0.2979, e0.6965) = (1.347, 2.007)
Odds estimate increases by at least 1.347 times, at most 2.007
times when the width increases 1 cm.

95% CI for e3β: (e3×0.2979, e3×0.6965) = (2.444, 8.082)
Odds estimate increases by at least 2.444 times, at most 8.082
times when the width increases 3 cm.
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When the sample size is small, it is safer to use Likelihood-ratio (LR) CI.

In SAS procedure PROC GENMOD, can use lrci and waldci to
generate Likelihood-ratio CI and Wald CI (output shown below).

In SAS procedure PROC LOGISTIC, can use clparm = PL and
clparm = WALD to generate Likelihood-ratio CI and Wald CI.

95% LR CI for eβ : (e0.3084, e0.7090) = (1.361, 2.032).

18 / 38



Confidence interval for π.

Recall that π(x) = eα+βx

1+eα+βx , we can first get the confidence interval for
α + βx then obtain the confidence interval of π(x) by the above
relationship between α + βx and π(x).

The estimated logit, i.e., estimate of α + βx = α̂ + β̂x .

Variance of α̂ + β̂x is Var(α̂ + β̂x) = Var(α̂) + x2Var(β̂) + 2xCov(α̂, β̂)

Estimates of Var(α̂),Var(β̂), and Cov(α̂, β̂) can be read from the
covariance matrix, which can be requested in SAS by covout option. In R,
you can use summary.glm(model)$cov.unscaled or vcov(model).

V̂ar(α̂) = 6.9102

V̂ar(β̂) = 0.0103

Ĉov(α̂, β̂) = −.2668
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[Crab data] The model fit is logit(π̂(x)) = −12.35 + 0.497x . Obtain
the confidence interval for π(26.5).

The estimated logit is −12.35 + 0.497× 26.5 = 0.825.

The estimated variance of the estimated logit is
6.9102 + (26.5)2 × 0.0103 + 2× 26.5× (−0.2668) = 0.038

Therefore, the confidence interval for the estimated logit is
0.825± 1.96×

√
0.038 = (0.44, 1.21).

Accordingly, the confidence interval for the π(26.5) is(
e0.44

1 + e0.44
,

e1.21

1 + e1.21

)
= (0.61, 0.77)
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Significance testing:

H0 : β = 0 (Y is independent of X or π(x) is constant in X )
H1 : β 6= 0

Wald Test: z = β̂

SE(β̂)
. Under H0, z ∼ N(0, 1) or z2 ∼ χ2

df =1.

Likelihood Ratio Test: Under H0, β = 0 and denote the log-likelihood
under H0 as L0. When β = β̂, we have the alternative log-likelihood under
H1. The test statistic is LR = −2(L0 − L1). Under H0, LR ∼ χ2

df =1.

[Crab data]:

z = 0.4972
0.1017 = 4.89 and z2 = 23.91.

The p-value = 2P(Z > 4.89) = P(χ2
df =1 > 23.91) = 1.00836× 10−6

LR = 225.759− 194.453 = 31.31 and p-value = P(χ2
df =1 > 31.31).
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Logistic Regression for Contingency Table

Logistic regression model can be developed for 2-way, 3-way, and muli-way
tables to study the effect of the explanatory variables if one of the factors
(dimension) can be treated as a dependent variable (response) and it has
only 2 levels. For example,

For a R×C two-way table, if the C (column) is a response variable with 2
levels and R (row) is an explanatory variable, a logistic regression model:
logit(π) = α + β R can be built.

For a R×C×D table, if the C is a response variable with 2 levels, and R
and D are explanatory variables, a logistic regression model:
logit(π) = α + β1R + β2D can be built.

If R and D are categorical variables, dummy variables should be used for
them. This can be specify in the Class statement in SAS and factor in R.
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Logistic Regression for 2 × 2 Table

[Example] Kidney stone treatment

Stone Treatment Response Y
Z X Success Failure

Small
A 81 6
B 234 36

Large
A 192 71
B 55 25

Marginal Tables
Treatment Response Y

X Success Failure
A 273 77
B 289 61

Suppose here we would like to study the relationship between Treatment
and Response. That is, we ignore the information of Stone size.

Y =

{
1 if Success

0 if Failure
X = Treatment =

{
1 Trt A

0 Trt B

Model:
logit(π(x)) = α + βX

.
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This means, Response has no effect on the Stone Size once Treatment
information has been taken into account. That is, the Response and Stone
Size are conditionally independent given Treatment.

Logistic model logit(π(x)) = α + βX implies:

odds =
π

1− π
=

{
eα+β if Trt is A

eα if Trt is B

Therefore,

α = log odds of success for Trt B

β = increment in log odds for Trt A
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Model fit: logit(π̂) = 1.56− 0.29X

Estimated odds of heard attach =

{
e1.56−0.29 = 3.56 if Trt A

e1.56 = 4.76 if Trt B

Estimated odds ratio = eβ̂ = e−0.29 = 0.748

Estimated odds of success in Trt A is 0.748 times of odds in Trt B.

95 % CI for β: −0.29± 1.96× 0.19 = (−0.6624, 0.0824)

95 % CI for eβ : (e−0.6624, e0.0824) = (0.52, 1.09).
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Analyze this marginal table using PROC FREQ in SAS with relrisk option.

Here, the estimate is the same as we obtain from logistic model. Thus,
empirically, we find that analyzing a 2× 2 table for relatedness is
equivalent to logistic regression with a dummy variable.

In general, analyzing a I × 2 table for relatedness is equivalent to logistic

regression with (I − 1) dummy variables.
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Case-control Studies

X = smoked at least one cigarette per day for at least a year

Y = lung cancer indicator

Lung Cancer
Smoked Yes No

Yes 688 650
No 21 59
Total 709 709

Case-control studies are retrospective sampling designs, we can
estimate P(X = i |Y = j) but not P(Y = j |X = i). Odds ratio can
be used to measure the strength of association.

For a case-control study, we can still fit a logistic regression. The β
have the same meaning as that in a prospective study, but the α is
not meaningful anymore.
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Logistic Regression for 2× 2× 2 Table (Main effect model)

[Example] Kidney stone treatment

Stone Treatment Response Y
Z X Success Failure

Small
A 81 6
B 234 36

Large
A 192 71
B 55 25

Suppose

Y =

{
1 if Success

0 if Failure

X1 = Treatment =

{
1 Trt A

0 Trt B
X2 = Stone size =

{
1 Large

0 Small
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Logistic model logit(π(x)) = α + β1X1 + β2X2 implies:

log odds = log(
π

1− π
) =


α treat small stone with Trt B

α + β1 treat small stone with Trt A

α + β2 treat large stone with Trt B

α + β1 + β2 treat large stone with Trt A

Hence,

α: log odds of success for treating small stone with Trt B.

β1: increment to log odds for using Trt A.

β2: increment to log odds for treating large stone.
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Model fit: logit(π̂) = 1.94 + 0.36X1 − 1.26X2

Controlling for stone size, estimated odds of success for using Trt A is
e0.36 = 1.43 times of the estimated odds for Trt B.

95 % CI for β1: 0.36± 1.96(0.23) = (−0.09, 0.81)

95 % CI for eβ1 : (e−0.09, e0.81) = (0.91, 2.24).
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Closer look at the model logit(π(x)) = α + β1X1 + β2X2.

No interaction means that
The relationship of Y and X1 is the same at each level of X2

(e0.36 = 1.43)
The relationship of Y and X2 is the same at each level of X1

(e−1.26 = 0.28)

That is, the homogeneous association that the same odds ratio
at each level of other variable.

If β1 = 0, then Y is conditionally independent of X1 given X2.
To test for H0 : β = 0 vs H1 : β1 6= 0,

z =
β̂1

SE(β̂1)
=

0.36

0.23
= 1.56, p-value = 2× P(Z > 1.56) = 0.12

The p-value > 0.05. That is, controlling for stone size, the
odds of success are similar for Trts A and B.
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Do we need stone size in the model?

H0 : β2 = 0 (given trt, Y is independent of stone size)
H1 : β2 6= 0

z =
β̂2

SE(β̂2)
=
−1.26

0.24
= −5.27, p-value = 2× P(Z > 5.27)

Or z2 = (−5.27)2 = 27.8, p-value = P(χ2
df =1 > 27.8)

Both p-value = 1.34× 10−7 < 0.05. That is, there is evidence
that controlling for treatment, success less likely for large stones
than small stones.
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Logistic Regression for 2× 2× 2 Table (Interaction model)

Previous model with only main effects assumes homogenous association.
Let’s check this assumption by including the interaction term.

Model:
logit(π(x)) = α + β1X1 + β2X2 + β3X1X2

This model is a saturated model (that is, the most complex model, which
provides perfect fit to the data).

X1 = Treatment =

{
1 Trt A

0 Trt B
X2 = Stone size =

{
1 Large

0 Small

α: log odds of success for treating small stone with Trt B.

α + β1: log odds of success for treating small stone with Trt A.

α + β2: log odds of success for treating large stone with Trt B.

α+ β1 + β2 + β3: log odds of success for treating large stone with Trt
A
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Model fit: logit(π̂) = 1.87 + 0.73X1 − 1.08X2 − 0.52X1X2

For small stones, estimated odds of success for treatment A is
e0.7309 = 2.0769 times of estimated odds for treatment B.

For large stones, estimated odds of success for treatment A is
e0.7309−0.5245 = 1.2292 times estimated odds for treatment B.

Under the interaction model, the odds ratios for treatment A versus

Treatment B are different under different stone sizes.
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Do we need interaction in the model?

H0 : β3 = 0 v.s. H1 : β3 6= 0

z =
β̂3

SE(β̂3)
=
−0.52

0.54
= −0.98, p-value = 2× P(Z > 0.98)

Or z2 = (−0.98)2 = 0.96, p-value = P(χ2
df =1 > 0.96)

Both p-value = 0.33 > 0.05. That is, no strong evidence to reject
the assumption of homogenous association.

Recall, Breslow-Day Test for testing homogenous association for
2× 2× K table.
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Analyze this partial table using PROC FREQ in SAS with relrisk option.

Here, the estimate from controlling stone size, is the same as we obtain
from logistic model. So, there is an equivalence in fitting a contingency
2× 2× K table(X × Y × Z ) with a saturated logistic model of Y with 1
dummy variable for X , K − 1 dummy variables for Z , and their interaction
terms.
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Further Comments on Logistic Regression for 2× 2× K Table

A typical example is multi-center clinical trials.

π = P(Y = success).

X = Treatment =

{
1 Trt A

0 Trt B

Center = 1, 2, ...,K .

Model:
logit = α + βX + β1C1 + β2C2 + . . .+ βK−1CK−1,

where C1,C2, . . . ,CK−1 are dummy/indicator variables for center. Here the
K -th center is the baseline. For all other centers, Ci = 1 if the study is
conducted in center i .

βi is the effect for center i relative to the K -th center.

No center effect means β1 = β2 = . . . = βK−1 = 0.
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β = 0 means no treatment effect.

Note: this model assumes homogeneous association. Because
the odds ratio eβ is the same for each center. That is, no
treatment by center interaction.
eβ can be understood as the common XY odds ratio for each of
the K partial tables.
In previous lecture, we use Cochran-Mantel-Hazenszel Test for
the similar purpose.
Under the logistic model, we can use the Wald test or the
likelihood-ratio test.
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Coding Scheme for Categorical Predictors

A categorical variable of K levels can be represented by K − 1 variables.
Two commonly used coding schemes are dummy coding and effect coding.

Different programs use different default schemes. PROC GENMOD
uses dummy coding and PROC LOGISTIC uses effect coding. This
can be changed by PARAM=XXX option.

Because the same number of variables are used to represent the
categorical variables, both coding schemes result in the same overall
fit. However, the interpretation of the coefficients change.

Both schemes need to specify a reference level. In SAS, this level can
be changed by the Ref=XX option. For dummy coding, this reference
level is considered as the baseline, that all the other levels need to be
compared with this baseline. For effect coding, all levels are compared
with the grand mean. The difference of this reference level and the
other levels is, the effect of this reference level is not directly available
and need to be computed additionally.

Illustrate using 2× 2× K table main effect model with K = 5. That is,
logit = α + βX + β1C1 + β2C2 + β3C3 + β4C4.
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Dummy coding

Dummy coding uses dummy variables which only takes 0 or 1 value. If the
5th center is the baseline, then

Dummy coding
C1 C2 C3 C4

Center

Center 1 1 0 0 0
Center 2 0 1 0 0
Center 3 0 0 1 0
Center 4 0 0 0 1
Center 5 0 0 0 0

α = log odds for the 5-th
center using trt B

βi = difference of log odds
for i-th center relative to the
5-th center using trt B

To see this,

Log odds of success using trt B
= α + β1C1 + β2C2 + β3C3 + β4C4

=



α + β1 Center 1

α + β2 Center 2

α + β3 Center 3

α + β4 Center 4

α Center 5
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Effect coding

Here, the reference level always equals -1
Dummy coding

C1 C2 C3 C4

Center

Center 1 1 0 0 0
Center 2 0 1 0 0
Center 3 0 0 1 0
Center 4 0 0 0 1
Center 5 -1 -1 -1 -1

α = grand average of the log
odds of success using trt B
across all centers

βi = difference of the log
odds for i-th center relative
to the grand average log
odds using trt B

For the reference center, the
effect is −β1 − β2 − β3 − β4

To see this,

Log odds of success using trt B
= α + β1C1 + β2C2 + β3C3 + β4C4

=



α + β1 Center 1

α + β2 Center 2

α + β3 Center 3

α + β4 Center 4

α− β1 − β2 − β3 − β4 Center 5
Average these 5 terms,

(α + β1) + (α + β2) + (α + β3) + (α + β4) + (α− β1 − β2 − β3 − β4)

5
= α
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Building Meaningful Models

The model building process becomes more challenging as the
number of explanatory variables increases because of the rapid
increase in possible effects and interactions.

The model should be complex enough to fit the data well,

but simpler models are easier to interpret.

Confirmatory Analyses: Model building is guided by a theory, for
instance, certain terms are included.

Exploratory Analyses: Typically there is a lack of underlying theory.
A search among many models is conducted in a hope to find clues
about which predictors are associated with the response and suggest
questions for future research.
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How Many Predictors Can You Use?

One guideline is that there should be at least 10 observations with
y = 0 or y = 1 for every predictor included. For instance, if y = 1
only 30 times out of 1000 observations (that is, y = 0 970 times),
the model should nave no more than about 3 predictors even though
the overall sample size is large.

When this guideline is violated,

software still fits the model

ML estimates may be quite biased and estimates of standard
errors may be poor

Models with too many predictors often suffer from multicollinearity.
That is, correlations among predictors cause none of the predictors
is significant even though collectively they are significant.
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General Consideration

For both grouped data and ungrouped data,

Examine significance of parameters using Wald test and LR test

Compare with saturated model with some measure for goodness of fit

Compare two nested models using LR test
(As null model is nested within any other models, so a special case
here is to compare with the null model.)

Compare two non-nested models using prediction performance and
information criterion

Influential diagnosis

For grouped data,

Compare with saturated model
using LR test

Examine residuals

Check overdispersion

For ungrouped data,

Compare with saturated model
using Hosmer and Lemeshow
test which forms groups for
continuous variables
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Grouped Data, Ungrouped Data, and Continuous Predictors

The grouped data are the totals of successes and failures at each
combination of the predictor values

The ungrouped data are the raw observations

Although the ML estimates of parameters are the same for either
form of data, the X 2 and G 2 statistics are not

X 2 and G 2 only make sense for the grouped data. The large-sample
theory applies when the fitted counts mostly exceed 5

For logistic regression models with continuous or nearly continuous
predictors, the X 2 and G 2 statistics do not have approximate
chi-squared distributions. One way of getting around of this problem
is to create categories so that there are adequate number of
observations in each categories
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Goodness of Fit and the Deviance

The most complex model possible is the saturated model, denoted by Ms :
There is one parameter for each observation.

Goodness-of-fit examines adequacy of the current model to see if the
current model is close enough to the saturated model.

Deviance evaluates the “distance” between the saturated model and
current/working model (denoted by Mc) in terms of model fit. Use L to
denote the log-likelihood.

Deviance = G 2(Mc) = −2[L(Mc)− L(Ms)]
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Goodness of Fit Test

In terms of tests, we can conduct goodness of fit test by testing
whether all parameters in Ms but not in Mc are equal to 0.

If predictors are all categorical, we can use deviance as a test
statistic. This test is exactly the LR test for testing nested models.
Or we can use Pearson’s χ2 test. Both tests have the null
distribution as χ2

df where the df = (n-number of parameters in Mc).
Note, because we are under the grouped data case, therefore, the n
is exactly the same as the number of groups.

For the ungrouped data, one may create groups on continuous
variables to apply goodness of fit. One common approach is to form
groups of approximately equal number of observations ro of equal
class width. This is the basic principle of the Hosmer-Lemeshow
test. The null distribution is χ2

df with df = the number of groups -2.
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If there are K combinations across the levels of categorical variables, then
the group number is K . Assume there are nk observations belong to the
k-th group, among which n1k are the “success”. Under the working model,
the fitted count of ”success” is nk π̂k with π̂k computed from model Mc .

The deviance test statistics is

G 2(Mc) = 2
∑

observed · log

[
observed

fitted

]
= 2

∑
k

[
n1k log

(
n1k

nk π̂k

)
+ (nk − n1k) log

(
nk − n1k

nk − nk π̂k

)]
The corresponding Pearson statistic is

X 2(Mc) =
∑ (observed − fitted)2

fitted

=
∑
k

[
(n1k − nk π̂k)2

nk π̂k
+

(n1k − nk π̂k)2

nk − nk π̂k

]
=
∑
k

(n1k − nk π̂k)2

nk π̂k(1− π̂k)

Hosmer-Lemeshow test takes a similar form as the Pearson’s χ2 test with

all the counts obtained from the created groups, instead of natural groups.

Little guidance for choose the group number here, but generally it should

be larger than the number of parameters in the model.
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Goodness of fit measure: pseduo R2

In ordinary least square, R2 is often used as a goodness of fit measure
which accounts for the percentage of variation in the data that can be
explained by the model. Therefore, it represents an improvement from null
model to fitted model. Another name for R2 is the multiple correlation,
given the fact that it evaluates the relevance of all the predictors as a
whole to the response.

For logistic regression, a pseduo R2 measure can be obtained in similar
way. Use Mnull to represent the model with intercept only. Here the L is
the log-likelihood.

McFadden’s ρ: 1− L(Mc )
L(Mnull )

Adjusted McFadden’s ρ: 1− L(Mc )−no. of parameters in Mc

L(Mnull )

There are other measures developed for the same purpose. McFadden’s are

the most parallel to the R2 in form.
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Nested Models

When there are multiple choices of models available, we need to perform
model selection among those candidate models. For any two models we
compare, they may be nested within one another, or non-nested.

Let’s consider our crab data as an example. Previously, we have fit a
logistic model with a single continuous variable Width (denoted as x).
Now, we further consider the variable Color. For Color, the values are

1, light medium

2, medium

3, dark medium

4, dark

Because there is a natural order of those color values, we can either model
Color as a categorical variable, or a continuous variable.
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Therefore, we may come up with the following models.

Model (a): logit[Pr(Y = 1)] = α + β1x

Model (b): logit[Pr(Y = 1)] = α + β2c , where c treats Color as a
continuous variable.

Model (c): logit[Pr(Y = 1)] = α + β1x + β2c

Model (d): logit[Pr(Y = 1)] = α + β1x + β3c1 + β4c2 + β5c3, where
c1, c2, and c3 are dummy variables for Color that takes value 1, 2,
and 3, respectively. The level 4 is the baseline level.

Questions:

Are Model (a) and Model (b) nested models?

Are Model (a) and Model (c) nested models?

Are Model (c) and Model (d) nested models?
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Answers:

Are Model (a) and Model (b) nested models?

No. Model (a) is based on variable Weight, and Model (b) is based
on variable Color. Both models contain a variable that the other one
does not use.

Are Model (a) and Model (c) nested models?

Yes. Model (c) is based on variables Weight and Color, therefore, it is
a bigger model than Model (a). If we exclude variable Color, then the
Model (c) can be reduced to exactly the Model (a).

Are Model (c) and Model (d) nested models?

Surprisingly, yes. Sometimes, the nested models are less obvious to
detect. In fact, we can reduce model (d) to model (c) by assuming

β3 = 3β5, β4 = 2β5,

→ logit[Pr(Y = 1)] = α + β1x + 3β5c1 + 2β5c2 + β5c3

= α + β1x + β3(3c1 + 2c2 + c3)

= α + β1x + β3(4− c)

= (α + 4β3) + β1x + (−β3)c
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Testing Nested Models

For nested models, we can use likelihood ratio test to determine whether
the model with more parameters has similar model fit as the model with
reduced number of parameters.

If both models lead to similar model fit, then we may go with the model
with reduced parameters. In general,

H0 : the simpler model M1 is true

H1 : the more complext model M2 is true

We can also write the hypothesis in terms of tests for the parameters, e.g.,

Model (a) vs. Model (c) H0 : β2 = 0

Model (a) vs. Model (d) H0 : β3 = β4 = β5 = 0

Model (c) vs. Model (d) H0 : β3 = 3β5, β4 = 2β5
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The likelihood ratio test statistic is

2L(M2)− 2L(M1),

where L is the log-likelihood.

We can express this test statistics in terms of deviance G 2(M1)− G 2(M2).
Because

G 2(M1) = −2[L(M1)− L(Ms)]

G 2(M2) = −2[L(M2)− L(Ms)]

→ 2L(M2)− 2L(M1) = G 2(M1)− G 2(M2)

The null distribution is χ2
df given large sample size, where df = no. of

parameters in M2 - no. of parameters in M1.

An asymptotically equivalent test is based on the Pearson statistic

X 2(M1)− X 2(M2).
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For example,

Model (a) vs. Model (c) H0 : β2 = 0 null distn = χ2
1

Model (a) vs. Model (d) H0 : β3 = β4 = β5 = 0 null distn = χ2
3

Model (c) vs. Model (d) H0 : β3 = 3β5, β4 = 2β5 null distn = χ2
2

Comments:

Both G 2(M1) and G 2(M2) are likelihood ratio test statistic comparing the
fit of each model to the saturated model. Recall that, for the individual G 2

statistics to be well approximated by χ2, we need the group data. Or to
say, at least 80% of the µ̂i and (ni − µ̂i ) are greater than 5.

However, even if the individual G 2s are far away from χ2, their difference
may be reasonably approximated by χ2. For a good approximation, we
need to have a large sample size and small df . The same applies to the
Pearson statistic.
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Crab Data Example: Backward Elimination

Backward Elimination starts with a complex model and then determines
whether a certain term can be taken out.

Use Crab data as example. For those 173 samples, we consider covariates

C = color (light medium, medium, dark medium, and dark)

S = spine condition (both good, one broken, both broken)

W = width

Models Deviance
Model Predictors Deviance df AIC Compared Difference

1 C:S + C:W + S:W 173.7 155 209.7 –
2 C + S + W 186.6 166 200.6 (2)–(1) 12.9 (df = 11)

3a C + S 208.8 167 220.8 (3a)–(2) 22.2 (df = 1)
3b S + W 194.4 169 202.4 (3b)–(2) 7.8 (df = 3)
3c C + W 187.5 168 197.5 (3c)–(2) 0.9 (df = 2)
4a C 212.1 169 220.1 (4a)–(3c) 24.6 (df = 1)
4b W 194.5 171 198.5 (4b)–(3c) 7.0 (df = 3)
5 (C = dark) + W 188.0 170 194.0 (5)–(3c) 0.5 (df = 2)
6 None 225.8 172 227.8 (6)–(5) 37.8 (df = 2)
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Information Criterion

We have learned that LR test can be usd to compare two nested models,
where the difference of 2× log-likelihood between the two models is used
as the test statistic. Here we know that the large model has better model
fit, that is higher log-likelihood value; the question is, whether it is a
significant higher value.

Another way to evaluate the model fit is directly using a criterion that
considers both the model fit and model complexity. A common way is
using information criterion and the most commonly seen are AIC and BIC
(known as SC, Schwarz Criterion).

AIC = −2 log-likelihood + 2× number of βs

BIC = −2 log-likelihood + log(n)× number of parameters in model

A small AIC and BIC are preferred. Both can be applied to non-nested

models. BIC tends to select a model with less parameters than AIC does.

57 / 38



Prediction Performance

We may assume that a better model has superior predictive ability.

Classification table is useful tool to measure the agreement between the
observed dichotomous response variable and the predicted binary label
created by a certain rule. For example, if the π̂i > 0.5, the predicted label
is 1, otherwise 0.

Another way is to measure the correlation between predicted probabilities
and observed dichotomous response variable. The higher the correlation,
the better the performance.

Somer’s D

Goodman-Kruskal Gamma

Kendall’s Tau-α

Area under the ROC curve (c)
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Classification Table

The classification table is a cross-tabulation between

observed binary outcome y . These are true/actual values

predicted binary label ŷ . These are model-based and can be different
by models and cutoff rules.

The predicated label ŷ is obtained by applying a cutoff π0 to π̂.{
ŷ = 1, if π̂ > π0

ŷ = 0, if π̂ <= π0

Classification Table
Prediction

ŷ = 1 ŷ = 0
True/ y = 1 a b
Actual y = 0 c d

Three useful summaries of predictive
power can be calculated:

sensitivity = P(ŷ = 1|y = 1) = a
a+b

specificity = P(ŷ = 0|y = 0) = d
c+d

P(correct classification) = a+d
a+b+c+d
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Classification Table for Crab Data under simple logistic regression
with variable Width and two cutoffs for prediction

Prediction, π0 = 0.64 Prediction, π0 = 0.50
ŷ = 1 ŷ = 0 ŷ = 1 ŷ = 0 Total

True/ y = 1 74 37 94 17 111
Actual y = 0 20 42 37 25 62

For π0 = 0.64

sensitivity =
P(ŷ = 1|y = 1) = 74

111

specificity = P(ŷ = 0|y = 0) = 42
62

P(correct classification) = 74+42
111+62

For π0 = 0.5

sensitivity =
P(ŷ = 1|y = 1) = 94

111

specificity = P(ŷ = 0|y = 0) = 25
62

P(correct classification) = 94+25
111+62

Classification table has limitations:

It collapses continuous predictive value π̂ into binary ones. The choice of

π0 is arbitrary and results may be sensitive.
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Correlation Measurements

Let n be the total number of subjects. Then there are n(n − 1)/2 distinct
pairs of subjects. Let t be the total evaluated pairs, which is formed by
each subject with event to every subject without event. The pair is

tied: if the two predicted probabilities are within 0.002 of one-another

concordant: if the subject with the higher predicted probability has
the higher value for the response variable

discordant: if the subject with the higher predicted probability has the
lower value for the response variable

Let nt , nc , and nd denote the number of tied, concordant, and
discordant pairs, respectively. t = nt + nc + nd .

Somer’s D = (nc − nd)/t

Gamma = (nc − nd)/(nc + nd)

Tau-α = (nc − nd)/[n(n − 1)/2]

c = 0.5× (1 + Somer’s D) = (nc + 0.5× nt)/t

Kendall’s Tau-α is the most conservative of the three and closest in
spirit to the R2 statistic in linear regression 61 / 38



[SAS Output]

Association of Predicted Probabilities and Observed Responses

Percent Concordant 73.5 Somers’ D 0.485

Percent Discordant 25.0 Gamma 0.492

Percent Tied 1.5 Tau-a 0.224

Pairs 6882 c 0.742

73.5% of the 6882 total evaluated pairs are concordant

Kendall’s Tau-α statistics is 0.224 indicating a moderate,
positive association between the predicted probabilities and the
response variable
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Residuals for Logit Models

What is the influence of individual observations? With categorical
predictors, we can use residuals to compare observed and fitted counts.

Note that, under ungrouped data where explanatory variables are
continuous, each ni = 1. Then the residuals are usually uninformative.

Let yi denote the number of “successes” for ni trials at setting i of the
explanatory variables. Let π̂i denote the estimated probability of success
for the model fit. The fitted number of successes is ni π̂i

Pearson residual = ei =
yi − ni π̂i√
ni π̂i (1− π̂i )

.

It is obvious that the Pearson statistic X 2(M) =
∑

i e
2
i .

When ni is large, ei has an approximate normal distribution. When the
model holds, {ei} has an approximate expected value of zero but a smaller
variance than a standard normal variable.
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Therefore, we introduce the standardized residuals,

Standardized residual =
yi − ni π̂i

SE (yi − ni π̂i )
=

ei√
1− hi

∼ N(0, 1)

where 0 < hi < 1 is the “leverage” of the ith observation. It is the ith
diagonal of the “hat matrix” H (more details later). It takes into account
the variation introduced in using π̂i instead of πi .

Similar to the Pearson residuals, we can also define deviance residuals di .

Devianc residual = |di |

=

{
2

[
n1i log

(
n1i

ni π̂i

)
+ (ni − n1i ) log

(
ni − n1i

ni − ni π̂i

)]}1/2

.

The sign of di is set to be the same as that of n1i − ni π̂i . It is obvious that
Deviance statistic G 2(M) =

∑
i d

2
i .

Usually, if residuals fall outside (−3, 3), there is evidence of lack of fit for
those observations. Some sources use (−2, 2).
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Influence Diagnostics for Logistic Regression

Influence pertains to how much parameter estimates would change if one
observation was omitted. The diagnostic tools are very similar to those
used in linear regression Yn×1 = Xn×pβp×1 + ε.

Leverage

In linear regression,
β̂ = (XTX )−1XTY → Ŷ = X β̂ = X (XTX )−1XTY . We define hat
matrix Hn×n = X (XTX )−1X , which transforms Y to Ŷ . The i-th
diagonal element of H, ĥi , is leverage for the i-th observation. It
evaluates how far xi lies from the centroid of x1, . . . , xn.

Leverage values greater than 2p/n or 3p/n are often flagged as
potentially influential. It may be helpful to identify those observations,
remove them one at a time, and see how the parameters change.

Unlike linear regression, the leverage ĥi depends on both the model fit
β̂ as well as the covariates X . Points have extreme predictor values
may not have high leverage ĥi if π̂i is close to 0 to 1. Still may be
useful for detecting extreme predictor values xi .
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Leverage

The hat matrix for logistic regression is

H∗
n×n = X ∗(X ∗TX ∗)−1X ∗T ,

where the X ∗ = W 1/2X and W is a diagonal matrix with the i-th
element ni π̂i (1− π̂i ). Because π̂ contains β̂, the hat matrix H∗

relates to the model.

Recall that, this hi has used to adjust Pearson residuals to obtain
standardized residual, which is standard normal. ri = ei/

√
1− hi .

Comment on X ∗: In GLM we mentioned the Fisher scoring algorithm,
which can be written as an iterative re-weighted least squares. For
logistic model, the weight is W . There are other analogues between
linear model and logistic model. The estimated covariance matrix is
(XTX )−1 for linear regression, and (XTWX )−1 for logistic model.
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Model Diagnostics: Leave-one-out measures

Let β̂i be an estimated effect. Let β̂i(j) be its updated estimate after
removing the j observation.

Dfbetaij =
β̂i − β̂i(j)
SE (β̂i )

Dfbetaij measures the standardized difference in β̂i when one
observation is removed.

Confidence interval displacement diagnostic ci = e2
i ĥi/(1− ĥi )

2. It
measures the change in the joint confidence region for β when one
observation is removed.

Similarly, we can measure the change in X 2 and G 2 when one
observation is removed.
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