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Introduction

Previously, we have learnt logistic models for binary/dichotomous
response. For example, Y = 1 for event and Y = 0 for no event.

Specifically, we are modeling

logit(P(Y = 1)) = log

(
P(Y = 1)

1− P(Y = 1)

)
= log

(
P(Y = 1)

P(Y = 0)

)

The predictors can be categorical or continuous.

When predictors are all categorical, we discuss a special case with
XYZ three-way contingency table for Y = 2 level, Z = K level.

For homogeneous association (main effect model), dependence
can be measured by the logistic model or CMH statistics
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Introduction (cont.)

In practice, there are many cases where the response has more than
two categories (polychotomous).

Those categories can be nominal or ordinal.

Nominal: Primary food choice (Fish, Invertebrates, and Others)

Ordinal: Political Ideology (Very liberal, Slightly liberal,
Moderate, Slightly conservative, and Very conservative)
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Overview

When Y is nominal,

Baseline-Category Logits Model

One single continuous predictor
Categorical predictors

When Y is ordinal,

Baseline-Category Logits Model

Cumulative Logit Model

The proportional Odds Property
Latent variable motivation

Adjacent-Categories Logits

Continuation-Ratio Logits
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Learning Objectives

1. Understand model applicability

2. Interpret parameters and conduct hypothesis testing

3. Estimate response probabilities

Reading: Agresti (2002), Section 6.1-6.3

Note,

Understand examples for different models.

Model checking is very similar to logistic cases and therefore is not
addressed separately in our textbook.

For example, goodness of fit only applies to grouped data.

When Y has more than two categories, we could provide dependence
measure to XYZ contingency table where Y has more than 2 levels.
Alternatively, we can use generalized CMH statistics. This is covered
in book section 6.4 and we will skip it in class.
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Example: Alligator Data

In a study by the Florida Game and Fresh Water Fish Commission on the
foods that alligators in the wild choose to eat, 59 alligators in Lake George,
Florida, were sampled and the primary food type found in the alligators
stomach was recorded along with the alligator length.

Primary Food Choice (Y )
Alligator Length (X ) Fish (F) Invertebrates (I) Other (O)

1.24 0 1 0
1.30 0 1 0
1.30 0 1 0
1.32 1 0 0
1.32 1 0 0

...
...

...
...

3.66 1 0 0
3.68 0 0 1
3.71 1 0 0
3.89 1 0 0

Note that alligators of the same length each has its own row, i.e.,
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Multinomial Distribution

Y has J categories, where J ≥ 2.

Joint distribution {π1, π2, . . . , πJ}, where

πj = the response probability for category j , j = 1, . . . , J

The π’s satisfies
∑

j πj = 1.

n1 = number of observations having outcomes in category 1
n2 = number of observations having outcomes in category 2, . . .
where the total sample n =

∑
j nj .

{n1, n2, . . . , nJ} has a multinomial distribution:

Pr(# of Y in category 1 = n1, · · · ,# of Y in category J = nJ)

=
n!

n1!n2! · · · nJ !
πn1
1 π

n2
2 · · ·π

nJ
J

Special case, for ungrouped data, n = 1 for each observation.
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Baseline-Category Logits

Form logits: For J outcomes, there are totally J(J − 1)/2 logits (log odds)
that can be formulated, only J − 1 are non-redundant.

Logit models for nominal response variables pair each category with a
baseline category. When the last category (J ) is the baseline, the
baseline-category logits are

log

(
πj
πJ

)
, j = 1, . . . , J − 1

The baseline-category logit model with a predictor x is

log

(
πj
πJ

)
= αj + βjx , j = 1, . . . , J − 1

Separate set of parameters (αj , βj) for each logit.

eβj is the multiplicative effect of a 1-unit increase in x on the conditional

odds of response j given that the response is either j or J. That is, of the

odds of j versus the baseline J.
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Baseline-Category Logits (cont.)

There are J − 1 equations. These equations will be fit simultaneously,
resulting in smaller standard errors of parameter estimates than when
fitting them separately. For instance

For J = 3, the 2 equations are

log

(
π1
π3

)
= α1 + β1x ,

and

log

(
π2
π3

)
= α2 + β2x

For J = 2, the model equation is

log

(
π1
π2

)
= α1 + β1x

which is the simple logistic regression since π1 + π2 = 1
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Baseline-Category Logits (cont.)

The J − 1 model equations jointly determine equations for all other pairs
of categories. Therefore, the baseline category is arbitrary and does not
affect model fit.

For example, for an arbitrary pair of categories a and b,

log

(
πa
πb

)
= log

(
πa/πJ
πb/πJ

)
= log

(
πa
πJ

)
− log

(
πb
πJ

)
= (αa + βax)− (αb + βbx)

= (αa − αb) + (βa − βb)x

The probability πj = Pr(Y is in category j) is given by

πj =
exp{αj + βj x}∑
h exp{αh + βh x}

, j = 1, . . . , J

with αJ = βJ = 0 assuming J is the reference category.
10 / 38



SAS output: Alligator Data

The ML prediction equations are

log(π̂1/π̂3) = 1.618− 0.110 x

and
log(π̂2/π̂3) = 5.697− 2.465 x

The estimated log odds that the response is “fish” rather than
“invertebrate” equals

log(π̂1/π̂2) = (1.618− 5.697) + [−0.110− (−2.465)] x

= −4.08 + 2.355 x
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The estimates for a particular equation are interpreted as in binary
logistic regression, conditional on the event that the outcome was one
of those two categories.

For instance, given that the primary food type is fish or invertebrate,
for alligators of length x + 1 meters, the estimated odds that primary
food type is “fish” rather than “invertebrate” equal
exp(2.355) = 10.5 times the estimated odds at length x meters

The hypothesis that primary food choice is independent of alligator
length is

H0 : β1 = β2 = 0

The likelihood-ratio test statistic equals 16.8, with df = 2. The
P-value of 0.0002 provides strong evidence of a length effect.
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Estimating Response Probabilities

Given length x , the estimated probabilities of the outcomes (Fish,
Invertebrate, Other) are

π̂1 =
exp{1.62− 0.11 x}

1 + exp{1.62− 0.11 x}+ exp{5.70− 2.47 x}

π̂2 =
exp{5.70− 2.47 x}

1 + exp{1.62− 0.11 x}+ exp{5.70− 2.47 x}

π̂3 =
1

1 + exp{1.62− 0.11 x}+ exp{5.70− 2.47 x}
= 1− π̂1 − π̂2

The “1” term in each denominator is generated by
exp{α̂3 + β̂3 x} = 1 because α̂3 = β̂3 = 0 with the baseline category.
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Categorical Predictors

When explanatory variables are entirely categorical, a contingency
table can summarize the data. If the data are not sparse, one can
test model goodness of fit using the X 2 or G 2 statistics
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Example: Afterlife Data

Belief in Afterlife
Race Gender Yes Undecided No
White Female 371 49 74

Male 250 45 71
Black Female 64 9 15

Male 25 5 13

Y = belief in life after death (1-Yes, 2-Undecided, 3-No)

x1 = gender: 1 for female; 0 for male

x2 = race: 1 for whites; 0 for blacks

Use “No” as the baseline category for Y , the multicategory logit model is

log(πj/π3) = αj + βG
j x1 + βR

j x2, j = 1, 2

where G and R superscripts identify the gender and race parameters

βG
1 is the conditional log odds ratio between gender and response

categories 1 and 3 (Yes and No), given race.
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SAS output: Alligator Data

Therefore,

log(π1/π3) = 0.883 + 0.419x1 + 0.342x2

log(π2/π3) = −0.758 + 0.105x1 + 0.271x2

For females the estimated odds of response “yes” versus “no” on
afterlife is exp(β̂G

1 ) = exp(0.419) = 1.5 times those for males,
controlling for race.

For whites, the estimated odds of response “yes” versus “no” on
afterlife is exp(βR

1 ) = exp(0.342) = 1.4 times those for blacks,
controlling for gender.
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Based on the prediction models,

log(π1/π3) = 0.883 + 0.419x1 + 0.342x2

log(π2/π3) = −0.758 + 0.105x1 + 0.271x2,

we can obtain estimated probabilities.

To illustrate, for white females (x1 = 1, x2 = 1), the estimated probability
of response 1 (“yes”) on afterlife is

exp{0.883 + 0.419(1) + 0.342(1)}
1 + exp{0.883 + 0.419(1) + 0.342(1)}+ exp{−0.758 + 0.105(1) + 0.271(1)}
= 0.76
All these probabilities are shown below:

Estimated Probabilities for Belief in Afterlife
Belief in Afterlife

Race Gender Yes Undecided No
White Female 0.76 0.10 0.14

Male 0.68 0.12 0.20
Black Female 0.71 0.10 0.19

Male 0.62 0.12 0.26
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Cumulative Logit Models for Ordinal Responses

Question: if there is a natural ordering in the response, how to use
such information in the modeling?

A cumulative probability for Y is defined as

Pr(Y ≤ j) = π1 + · · ·+ πj , j = 1, . . . , J

The cumulative probabilities are non-decreasing:

Pr(Y ≤ 1) ≤ Pr(Y ≤ 2) ≤ · · · ≤ Pr(Y ≤ J) = 1
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The logits of the cumulative probabilities are

logit[Pr(Y ≤ j)] = log

[
Pr(Y ≤ j)

1− Pr(Y ≤ j)

]
= log

[
π1 + · · ·+ πj
πj+1 + · · ·+ πJ

]
, j = 1, . . . , J − 1

These are called cumulative logits. Note that there are only J − 1
logits to be model, because the last one, Pr(Y ≤ J), is always 1.

For J = 3, for example, 2 equations are used to define the
model:

logit[Pr(Y ≤ 1)] = log[π1/(π2 + π3)]

logit[Pr(Y ≤ 2)] = log[(π1 + π2)/π3]
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Example: Political Ideology and Party Affiliation

Political Ideology by Gender and Political Party
Political Ideology

Political Very Slightly Slightly Very
Gender Party Liberal Liberal Moderate Conservative Conservative

Female Democratic 44 47 118 23 32
Republican 18 28 86 39 48

Male Democratic 36 34 53 18 23
Republican 12 18 62 45 51

In this example, there are J = 5 response categories. Let x be an
indicator variable for political party, with x = 1 for Democrats and
x = 0 for Republicans.

The model we want to fit is

logit[Pr(Y ≤ j)] = αj + βx , j = 1, 2, 3, 4
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Cumulative Logit Models with Proportional Odds Property

For an explanatory variable x , the cumulative logit model is

logit[Pr(Y ≤ j)] = αj + βx , j = 1, . . . , J − 1

Note that β does not have a j subscript: This model assumes that the
effect x is identical for all J − 1 cumulative logits.

How many parameters does this model have?

Because

Pr(Y ≤ j) =
exp{αj + βx}

1 + exp{αj + βx}
,

we can plot the estimated cumulative probabilities.

→ At any fixed x value, the curves have the same ordering as the
cumulative probabilities.
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Depiction of cumulative probabilities in proportional odds model for β > 0
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The Proportional Odds Property

For two values x1 and x2 of x , the odds ratio comparing the cumulative
probabilities is

Pr(Y ≤ j |X = x2)/Pr(Y > j |X = x2)

Pr(Y ≤ j |X = x1)/Pr(Y > j |X = x1)

=
exp{αj + βx2}
exp{αj + βx1}

= exp{β(x2 − x1)}

That is, the log of this odds ratio is β(x2 − x1), which is proportional to
the difference x2 − x1. This is true for any j .

Therefore, we also call this model as proportional odds model.
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SAS Output: Political Ideology and Party Affiliation

The estimated effect of political party is β̂ = 0.975 (SE = 0.129)

For any fixed j , the estimated odds in the liberal direction rather than
the conservative direction (i.e., Y ≤ j rather than Y > j) for
Democrats (party=1) vs Republicans (party=0) is exp(0.975) = 2.65.
That is, Democrats tend to be more liberal than Republicans.
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The Wald statistic for testing H0 : β = 0 is 57.0182 with df = 1.
There is an strong indication of association (p < 0.0001).

A 95% confidence interval for β is 0.975± 1.96(0.129) = (0.72, 1.23).
The confidence interval for the odds ratio of cumulative probabilities
equals (exp(0.72), exp(1.23)) = (2.1, 3.4). The odds of being at the
liberal end of the political ideology scale is at least twice as high for
Democrats as for Republicans. The effect is practically significant as
well as statistically significant.
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Estimating cumulative probabilities:

Using the formula that

Pr(Y ≤ j) =
exp{αj + βx}

1 + exp{αj + βx}

the first estimated cumulative probability for Democrats (x = 1) is

Pr(Y ≤ 1) =
exp{−2.469 + 0.975(1)}

1 + exp{−2.469 + 0.975(1)}
= 0.18

Similarly,

Pr(Y ≤ 2) = 0.38,Pr(Y ≤ 3) = 0.77,Pr(Y ≤ 4) = 0.89

The estimated probability that a Democrat is moderate (category 3) is

Pr(Y = 3) = Pr(Y ≤ 3)− Pr(Y ≤ 2) = 0.77− 0.38 = 0.39
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Checking Model Fit

The score test of the proportional odds assumption. Under H0, the
effect is β for all four cumulative logit models. Under H1,
βj , j ∈ 1, . . . , 4 will be estimated. This statistic equals 3.9 with
df = 3 and p = 0.2714, indicating no evidence of lack of fit.

The Pearson X 2 and deviance G 2 statistics can be applied to assess
the goodness of fit for grouped data. When nearly all expected cell
counts are at least about 5, these test statistics have approximate
chi-squared distributions. Here X 2 = 3.7 and G 2 = 3.7, and p-values
are about 0.3. The model fits adequately.
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Latent Variable Motivation

An unobserved variable assumed to underlie what we actually
observe is called a latent variable. Let Y ∗ denote a latent variable
with distribution function G (y∗ − η). Suppose

−∞ = α0 < α1 < · · · < αJ−1 < αJ =∞

are cutpoints of the continuous scale for Y ∗ such that the observed
response Y satisfies

Y = j if αj−1 < Y ∗ ≤ αj

In other words, we observe Y in category j when the latent variable
falls in the j-th interval of values. Assume η(x) = βx is the mean of
Y ∗. Then

Pr(Y ≤ j |x) = Pr(Y ∗ ≤ αj |x) = G (αj − βx)
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Invariance to Choice of Response Categories

In latent variable motivation, the same parameters occur for the effects
regardless of how the cutpoints {αj} discretize the real line to form the
scale for Y . i.e., the effect parameters are invariant to the choice of
categories for Y . This nice feature of the model makes it possible to
compare estimates from studies using different response scales.

If a continuous variable measuring political ideology has a linear
regression with some predictor variables, then the same effect
parameters apply to a discrete version of political ideology with
categories (liberal, moderate, conservative).

If one models political ideology using (very liberal, slightly liberal,
moderate, slightly conservative, very conservative) and the other uses
(liberal, moderate, conservative), the parameters for the effect of a
predictor are roughly the same.

For instance, we combine the two liberal categories and combine the
two conservative categories so that there are 3 categories for the
response. The estimated party affiliation effect changes from 0.975
(SE = 0.129) to 1.006 (SE = 0.132). Interpretations are unchanged.
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Adjacent-Categories Logits

The adjacent-categories logits are

log

(
πj+1

πj

)
, j = 1, . . . , J − 1

For example, with J = 3, these logits are log(π2/π1) and log(π3/π2).

With a predictor x , the adjacent-categories logit model has form

log

(
πj+1

πj

)
= αj + βjx , j = 1, . . . , J − 1

The adjacent-categories logits, like the baseline-category logits, determine
the logits for all pairs of response categories.
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Adjacent-Categories Logits (cont.)

Without further structure, the adjacent-categories logit model

log

(
πj+1

πj

)
= αj + βjx , j = 1, . . . , J − 1,

it is just a re-parameterization of the baseline logit model. In other words,
we can obtain the parameter estimate from one model to the other model.

For example, if we have the estimated proportional odds model with the
last category as the baseline when J = 3 as follows.

log

(
π̂1
π̂3

)
= a1 + b1x , log

(
π̂2
π̂3

)
= a2 + b2x

Then the adjacent-categories logits model can be obtained accordingly as

log

(
π̂2
π̂1

)
= (a2 − a1) + (b2 − b1)x , log

(
π̂3
π̂2

)
= −a2 − b2x
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Adjacent-Categories Logits - A Simpler Version

A simpler version of the model is

log

(
πj+1

πj

)
= αj + βx , j = 1, . . . , J − 1

That is, the effects {βj = β} of x on the odds of making the higher
instead of the lower response are identical for each pair of adjacent
response categories

Likelihood ratio test can be applied to determine the
H0 : β1 = β2 = . . . = βJ−1.
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Adjacent-Categories Logits - Estimate Probabilities

We can also estimate the probabilities from the models. Still take the
J = 3 case as an example,

log

(
π̂2
π̂1

)
= a1 + b1x , log

(
π̂3
π̂2

)
= a2 + b2x

Then we have

π̂2 = ea1+b1x π̂1 π̂3 = ea2+b2x π̂2

Assume π̂1 = φ, then we have

π̂1 = φ

π̂2 = ea1+b1xφ

π̂3 = ea2+b2xea1+b1xφ = e(a1+a2)+(b1+b2)xφ

By π̂1 + π̂2 + π̂3 = 1, we can solve for

φ =
1

1 + ea1+b1x + e(a1+a2)+(b1+b2)x
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Continuation-Ratio Logits

Continuation-Ratio Logits model uses another approach to forms logits for
ordered response categories in a sequential manner.

For J categories, those logits are log

(
π1
π2

)
log

(
π1 + π2
π3

)
. . .

log

(
π1 + π2 + . . .+ πJ−1

πJ

)
Each logit can be understood as a binary response that contrasts each
category with a grouping of categories from lower levels of the response.

The predictor effect can be interpreted accordingly to the logit. e.g., in the
2nd equation, the interpretation for predictor X’s effect is: (controlling the
rest predictors), for one unit change in predictor X, the estimated odds that
it is category 1 or 2 rather than 3 changes by a multiplicative factor of eβx .

We will not cover further details in this model. However, the estimation of

probabilities, the Wald test, and Wald CI can be similarly constructed. 36 / 38



Overdispersion

Overdispersion means that the actual covariance matrix of yi exceeds that
specified by the multinomial model V (yi ) = ni [Diag(πi )− πiπT

i ],

We may consider overdispersion for grouped data when the model has
already contained all covariates that worth considering and the overall
Pearson X 2 is substantially larger than its df.

In this situation, we may use the quasi-likelihood approach and introduce a
scale parameter σ2 so that V (yi ) = ni [Diag(πi )− πiπT

i ]σ2.

A usual estimate for σ2 is

σ̂2 =
X 2

df

Once we have σ̂2, we can use scale = σ̂ in the model statement in SAS.

→ σ̂2 = 1.221

σ̂ = 1.105
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Upper table: original fit

Lower table: adjusted fit for
overdispersion

Both table has same estimated
coefficients

Adjusted fit has larger standard error

Adjusted fit has wider CI

Recall that using this approach will
not change the parameter estimate,
but the new estimated standard error
is σ̂ times of the original and hence
the new Wald CI is wider.
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