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Introduction

Previously, we have learnt some models for XYZ three-way contingency
table. Specifically,

Y: Response of interest

X: Treatment

Z: Center

If Y takes two levels, we can apply logistic model.

If Y takes more than two levels, we can apply multicategory logit model.

In the above three-way table case, both models describe how a categorical
response depends on a set of categorical explanatory variables.

Question: what to do when there is no clear distinction between response

and explanatory variables?
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Motivating Example

Data is collected from a survey conducted by the Wright State University
School of Medicine and the United Health Services in Dayton, Ohio. The
survey asked students in their final year of a high school near Dayton, Ohio
whether they had ever used alcohol (A), cigarettes(C), or marijuana(M).

Alcohol Cigarette Drug Use
Use Use Yes No
Yes Yes 911 538

No 44 456
No Yes 3 43

No 2 279

Each of A, C, and M is a binary variable, and the cross-tabulate leads to
this 2× 2× 2 table.

Are A, C, and M independent of each other?

If not, how to measure the strength of association?
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Overview

Here we introduce loglinear models, which focus on associations between
categorical response variables and do not distinguish response variable and
explanatory variables.

Loglinear model for two-way tables

Independence model
Saturated model

Loglinear model for three-way tables

Mutual independence model
Joint independence model
Conditional independence model
Homogeneous model
Saturated model

Loglinear-Logistic connection

The emphasis is to
understand loglinear
models and make
connection with
contingency analysis
and logistic model.
The inference and
model selection have
already studied.
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Loglinear model

Loglinear models model cell counts for contingency tables. The focus of
loglinear models is on statistical independence and dependence. Therefore,
there is no clear distinction between response and explanatory variables.

When cross-classified n subjects, the cell counts can be modeled by
multinomial distribution.

Recall the connection between multinomial and Poison distribution. If
X1,X2, . . . ,Xc are independent Poisson variables with parameters
λ1, λ2, . . . , λc , respectively. Then the joint conditional distribution of
X1,X2, . . . ,Xc given

∑
Xi = n, i.e., X1,X2, . . . ,Xc |

∑
Xi = n, is

multinomial with parameter n and πi = λi/(λ1 + λ2 + . . .+ λc).

Therefore, we can model those multinomial cell counts using Poisson
models. Because of the

∑
Xi = n constraint, the intercept is not a

meaningful parameter, but a normalizing constant to ensure that the cell
probabilities add up to 1.

Loglinear model is just Poisson model for contingency tables. Therefore,
codes, inference, model comparison should not look foreign.
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Independence model for I × J two-way tables

Independence model log(µij) = λ+ λXi + λYj .

λ: normalizing constant

λXi : row effect for X = i . Only I − 1 are non-redundant. Use dummy
coding scheme and set the last level as reference → λXI = 0.

λYj : column effect for Y = j . Only J − 1 are non-redundant. Use

dummy coding scheme and set the last level as reference→ λYJ = 0.

Differences between two parameters for a given variables relate to the
log odds of making one response, relative to another, on that variable.

In this model

Number of cells: IJ

Number of parameters in the model: 1 + (I − 1) + (J − 1) = I + J − 1

Degree of freedom: IJ − (I + J − 1) = (I − 1)(J − 1)

That is, the goodness of fit test for this independence model is
(I − 1)(J − 1). This goodness of fit test is exactly the X 2 and G 2 tests of
independence for two-way table that we introduced in Chapter 2.
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Independence model for I × 2 table = intercept-only logit model

When J = 2, this independence model corresponds to the logit model with
only intercept.

logit(P(Y=1)) = α, where α = λY1 − λY2

To see this, we take row i

logit(P(Y=1)) = log

(
P(Y = 1)

1− P(Y = 1)

)
= log

(
µi1

µi2

)
= log(µi1)− log(µi2)

= (λ+ λXi + λY1 )− (λ+ λXi + λY2 )

= λY1 − λY2

This logit does not dependent on i , that is, does not depend on level of X .

In each row, the odds of response in column 1 equal eα = eλ
Y
1 −λ

Y
2
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Example of Independence Model: Afterlife

Belief in Afterlife
Race Yes No

White 1339 300
Black 260 55
Other 88 22
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Example of Independence Model: Afterlife (cont.)

Reading the output, it is dummy coding scheme where race = others and
belief = no are the reference.

Therefore, the independence model

log(µij) = λ+ λRi + λBj

can be written as

log(µij) = λ+ λR1 R1 + λR2 R2 + λB1 B1,

where

R1 =

{
1 white

0 otherwise
R2 =

{
1 black

0 otherwise
B1 =

{
1 belief=yes

0 belief=no

The prediction model

log(µ̂ij) = 3.00 + 2.70R1 + 1.05R2 + 1.50B1

Deviance = 0.36 with df =2 , no evidence of lack of fit.

For each race, the estimated odds of belief in afterlife is e1.5 = 4.5
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Saturated model for I × J two-way tables

Independence model log(µij) = λ+ λXi + λYj + λXYij .

λ: normalizing constant

λXi : row effect for X = i . Only I − 1 are non-redundant. Use dummy
coding scheme and set the last level as reference → λXI = 0.

λYj : column effect for Y = j . Only J − 1 are non-redundant. Use

dummy coding scheme and set the last level as reference→ λYJ = 0.

λXYij : association parameters. Using the above coding scheme,
λiJ = λIj = 0 for i = 1, . . . , I ; j = 1, . . . , J.

There is direct relationship between log odds ratios and {λXYij }
association parameters.

In this model

Number of cells: IJ

Number of parameters in the model:
1 + (I − 1) + (J − 1) + (I − 1)(J − 1) = IJ

Degree of freedom: 0
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Relationship between log odds ratios and {λXYij }

Consider log odds ratio comparing levels i and i ′ of X and j and j ′ of Y ,

log

(
µijµi ′j′

µi ′jµij′

)
= log(µij) + log(µi ′j′)− log(µi ′j)− log(µij′)

= (λ+ λXi + λYj + λXYij ) + (λ+ λXi ′ + λYj′ + λXYi ′j′ )

−(λ+ λXi ′ + λYj + λXYi ′j )− (λ+ λXi + λYj′ + λXYij′ )

= λXYij + λXYi ′j′ − λXYi ′j − λXYij′

Hence, the odds ratio is eλ
XY
ij +λXY

i′ j′−λ
XY
i′ j −λ

XY
ij′ .

Under saturated model, the expected cell counts are original observations.
Therefore, this estimated odds ratio is also the same as

nijni ′j′

ni ′jnj′i
.
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Example of Saturated Model: Afterlife

Belief in Afterlife
Race Yes No

White 1339 300
Black 260 55
Other 88 22
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Example of Saturated Model: Afterlife (cont.)

Using the same coding scheme, the saturated model

log(µij) = λ+ λRi + λBj + λRBij

can be written as

log(µij) = λ+ λR1 R1 + λR2 R2 + λB1 B1 + λRB11 R1B1 + λRB21 R2B1,

The prediction model

log(µ̂ij) = 3.09 + 2.61R1 + 0.92R2 + 1.39B1 + 0.11R1B1 + 0.17R2B1

The estimated odds ratios between belief and race are

e0.11 = 1.12 for white and other

e0.17 = 1.18 for black and other

e0.11−0.17 = 0.94 for white and black. The estimated odds of belief in
afterlife for whites are 0.94 times the estimated odds for blacks.

Recall that the independence model fitted well, none of these estimated

odds ratios differ significantly from 1.
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Loglinear Model for Three-way Table

With three-way contingency tables, loglinear models can represent various
independence and association patterns.

Model (X ,Y ,Z ): This model only has main effects for X ,Y , and Z .
This says that variables are mutually independent.

Model (XY ,Z ): This model has all main effects and the XY
association. This says that X and Y could be related, but Z is
unrelated to X or Y . That is XY is jointly independent with Z .

Model (XY ,XZ ): This model includes all main effects, and XY and
XZ association. This says that Y and Z are conditionally independent
given X . That is, the Y × Z odds ratios at each level of X are 1.

Model (XY ,XZ ,YZ ): This models includes all main effects and
two-way associations. This model says that the association between
any pair of variables is identical across all levels of the third variable.

Model (XYZ ): This model is the saturated model. This allows the
relationship between any pair of variables to vary across the levels of
the third.
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Model for Various Independence

Model (X ,Y ,Z )

Mutual Independence πijk = πi++π+j+π++k

Mutual Independence Model log(µijk) = λ+ λXi + λYj + λZk .

Model (XY ,Z )

Joint Independence πijk = πij+π++z

Joint Independence Model log(µijk) = λ+ λXi + λYj + λZk + λXYij .

Model (XY ,XZ )

Conditional Independence πijk|i = πij+|iπi+k|i

Conditional Independence Model
log(µijk) = λ+ λXi + λYj + λZk + λXYij + λXZik .

Recall that two-factor terms describes conditional association.
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Homogeneous Association Model (XY ,XZ ,YZ )

Model: log(µijk) = λ+ λXi + λYj + λZk + λXYij + λXZik + λYZjk .

Model interpretation refers to the highest-order parameters. To understand
those two-factor terms, we consider log odds ratio comparing levels i and i ′

of X and j and j ′ of Y given Z = k .

log(θXY (k)) = log

(
µijkµi ′j′k

µi ′jkµij′k

)
= log(µijk) + log(µi ′j′k)− log(µi ′jk)− log(µij′k)

= (λ+ λXi + λYj + λZk + λXYij + λXZik + λYZjk )

+(λ+ λXi ′ + λYj′ + λZk + λXYi ′j′ + λXZi ′k + λYZj′k )

−(λ+ λXi ′ + λYj + λZk + λXYi ′j + λXZi ′k + λYZj′k )

−(λ+ λXi + λYj′ + λZk + λXYij′ + λXZik + λYZjk )

= λXYij + λXYi ′j′ − λXYi ′j − λXYij′
The expression of log odds ratio does not depend on k , so the odds ratio is
the same at every level of Z . Similarly, this model has equal XZ odds ratios
at different levels of Y , and equal YZ odds ratios at different levels of X .
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Two-Factor Parameters Describe Conditional Associations

In the loglinear model (XY ,XZ ,YZ ), we show that the two-factor terms
describe conditional odds ratio. Specifically,

θXY (k) = eλ
XY
ij +λXY

i′ j′−λ
XY
i′ j −λ

XY
ij′

θXZ(j) = eλ
XZ
ik +λXZ

i′k′−λ
XZ
i′k−λ

XZ
ik′

θYZ(i) = eλ
YZ
jk +λYZ

j′k′−λ
YZ
j′k−λ

YZ
jk′

This conclusion can be generalized to other model whose highest order is
two-factor. For example,

For model (XY ,Z ) and (XY ,XZ ), you can interpret parameters by

θXY (k) = eλ
XY
ij +λXY

i′ j′−λ
XY
i′ j −λ

XY
ij′ .

For model (XY ,XZ ), you can interpret parameters by

θXZ(j) = eλ
XZ
ik +λXZ

i′k′−λ
XZ
i′k−λ

XZ
ik′ .
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Homogeneous Association Loglinear Model for I × 2× K Table
= Logit Model With Main Effects

When J = 2, we may treat it as a response and X and Z are explanatory.

logit(P(Y=1)) = α + βX
i + βZ

k ,

where α = λY1 − λY2 , βX
i = λXYi1 − λXYi2 , and βZ

k = λYZ1k − λYZ2k .

To see this, take X at its level i and Z at its level k ,

logit(P(Y=1)) = log

(
P(Y = 1)

1− P(Y = 1)

)
= log

(
P(Y = 1|X = i ,Z = k)

1− P(Y = 1|X = i ,Z = k)

)
= log

(
µi1k

µi2k

)
= log(µi1k)− log(µi2k)

= (λ+ λXi + λY1 + λZk + λXYi1 + λXZik + λYZ1k )

−(λ+ λXi + λY2 + λZk + λXYi2 + λXZik + λYZ2k )

= (λY1 − λY2 ) + (λXYi1 − λXYi2 ) + (λYZ1k − λYZ2k )

= (λY1 − λY2 ) + (λXY
i1 − λXY

i2 ) + (λYZ
1k − λYZ

2k )
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In the above derivation, the term λXZik cancels out.

The logistic model does not describe relationships among explanatory
variables, so it assumes nothing about their association structure.

It might seem that loglinear model (XY ,YZ ) leads to the same logistic

model form. However, to obtain exactly same model fit, we need the

loglinear model (XY ,YZ ,XZ ).
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Equivalent Loglinear and Logistic Models for a Three-Way Table
With Binary Response Variable Y

In each pairing of models in this table, the loglinear model
contains the XZ association term relating the variables that are
explanatory in the logistic models.
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Example: Drug Use

Alcohol Cigarette Drug Use
Use Use Yes No
Yes Yes 911 538

No 44 456
No Yes 3 43

No 2 279
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Example: Drug Use

Model (AC ,AM,MC ) permits all pairwise associations but has
homogeneous odds ratios. For example,

The AC fitted conditional odds ratios for this model equal 7.8.

e2.0545 = 7.8

For each level of M, students who have smoked cigarettes have
estimated odds of having drunk alcohol that are 7.8 times the
estimated odds for students who have not smoked cigarettes.

23 / 29



Model for Various Independence

Model (X ,Y ,Z )

Mutual Independence πijk = πi++π+j+π++k

Mutual Independence Model log(µijk) = λ+ λXi + λYj + λZk .

Model (XY ,Z )

Joint Independence πijk = πij+π++z

Joint Independence Model log(µijk) = λ+ λXi + λYj + λZk + λXYij .

Model (XY ,XZ )

Conditional Independence πjk|i = πj+|iπ+k|i

Conditional Independence Model
log(µijk) = λ+ λXi + λYj + λZk + λXYij + λXZik .

We will see later that two-factor terms describes conditional association.
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Example: Drug Use

We can also calculate the odds ratio from estimated/fitted cell counts.
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Example: Drug Use
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Goodness of Fit Tests

As Loglinear models deal with sets of categorical variables, we can apply
the goodness of fit test.

G 2 = 2
∑

nijk log

(
nijk
µ̂ijk

)
, X 2 =

∑ (nijk − µ̂ijk)2

µ̂ijk

Under the null hypothesis, both are distributed as χ2
df .

df is the number of cell counts minus the number of model
parameters.

Saturated model has df = 0

Small p-value indicates poor model fit

When it has poor model fit, we can investigate standardized residuals.
Lack of fit is indicated by absolute values larger than about 2 when
there are fewer cells or about 3 when there are many cells.
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Testing Nested Models

We can apply likelihood ratio test to compare nested models.

For example, (AM,CM) is a nested model of (AC ,AM,CM). Therefore,
we can apply the likelihood ratio test. Essentially, we are testing for
λAC = 0.

Test statistic: 2L(AC ,AM,CM)− 2L(AM,CM), here L(·) is the
Log-likelihood function

Test statistic: G 2(AM,CM)− G 2(AC ,AM,CM)

We can denote this as G 2[(AM,CM)|(AC ,AM,CM)]

Under the null hypothesis, the test statistic is distributed as χ2
df ,

where df is the difference between the number of parameters of the
two models, or the number of parameters tested in the null
hypothesis.
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Example: Drug Use
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