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Promoting similarity of model sparsity
structures in integrative analysis of
cancer genetic data
Yuan Huang,a Jin Liu,b Huangdi Yi,c Ben-Chang Shiad

and Shuangge Maa*†

In profiling studies, the analysis of a single dataset often leads to unsatisfactory results because of the small sample
size. Multi-dataset analysis utilizes information of multiple independent datasets and outperforms single-dataset
analysis. Among the available multi-dataset analysis methods, integrative analysis methods aggregate and ana-
lyze raw data and outperform meta-analysis methods, which analyze multiple datasets separately and then pool
summary statistics. In this study, we conduct integrative analysis and marker selection under the heterogeneity
structure, which allows different datasets to have overlapping but not necessarily identical sets of markers. Under
certain scenarios, it is reasonable to expect some similarity of identified marker sets – or equivalently, similarity
of model sparsity structures – across multiple datasets. However, the existing methods do not have a mechanism
to explicitly promote such similarity. To tackle this problem, we develop a sparse boosting method. This method
uses a BIC/HDBIC criterion to select weak learners in boosting and encourages sparsity. A new penalty is intro-
duced to promote the similarity of model sparsity structures across datasets. The proposed method has a intuitive
formulation and is broadly applicable and computationally affordable. In numerical studies, we analyze right
censored survival data under the accelerated failure time model. Simulation shows that the proposed method out-
performs alternative boosting and penalization methods with more accurate marker identification. The analysis
of three breast cancer prognosis datasets shows that the proposed method can identify marker sets with increased
similarity across datasets and improved prediction performance. Copyright © 2016 John Wiley & Sons, Ltd.

Keywords: integrative analysis; model sparsity structure; heterogeneity structure; sparse boosting; marker
identification

1. Introduction

Profiling studies have been extensively conducted in the search for genetic markers associated with dis-
ease outcomes and phenotypes such as risk, progression, and response to treatment. Data generated in
such studies have the “large d, small n” characteristic, with the number of covariates (e.g., gene expres-
sions profiled) d much larger than the sample size n. Results generated from the analysis of a single
dataset are often unsatisfactory [1]. Many factors contribute to the unsatisfactory results, with the most
important one likely being the small sample sizes. Fortunately, for many diseases, there are multiple
datasets from independent studies with comparable designs. Multi-dataset analysis combines information
across datasets, increases sample size, and can outperform single-dataset analysis. Multi-dataset analysis
methods include meta-analysis [2, 3] and integrative analysis methods. In “classic” meta-analysis, mul-
tiple datasets are initially analyzed separately, and then summary statistics are pooled across datasets.
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In contrast, in integrative analysis, the raw data from multiple datasets are pooled and analyzed. Recent
studies have shown that integrative analysis outperforms meta-analysis with more accurate marker
identification [4, 5].

Consider the integrative analysis of M independent datasets with the same type of response variable.
In dataset m(= 1,… ,M), denote Ym as the response variable, and Xm as the length-d vector of covariates
(e.g., gene expressions or SNPs). For simplicity of notation, it is assumed that the same set of covariates is
measured in all M datasets. In whole-genome studies, the sets of covariates measured in different datasets
are usually very similar. The rescaling approach [5] can easily accommodate covariates measured in some
but not all datasets. As one of the main goals of multi-dataset analysis is to find the similarity/difference
across datasets, integrative analysis may not be sensible if different datasets measure significantly dif-
ferent sets of covariates. In dataset m, assume nm i.i.d. observations. Assume that Ym ∼ 𝜙(𝛽′mXm), where
the form of model 𝜙 is known, and 𝛽m is the length-d vector of unknown regression coefficients. Denote
the jth component of 𝛽m as 𝛽m,j. Our goal is to identify markers associated with the response variables or,
equivalently, to determine which 𝛽m,j’s are nonzero.

The genetic basis of the M datasets, as measured by the identified marker sets, can be described using
the homogeneity structure or the heterogeneity structure [5]. Under the homogeneity structure, the same
set of markers is identified for all datasets, and so the M models have the same sparsity structure. That
is, I(𝛽m,j = 0) = I(𝛽k,j = 0) for all m, k = 1,… ,M and j = 1,… , d. The heterogeneity structure differs
from the homogeneity one by allowing the M models to have possibly different sparsity structures. Here,
it is possible that I(𝛽m,j = 0) ≠ I(𝛽k,j = 0) for some (j,m, k)’s. The heterogeneity structure includes the
homogeneity structure as a special case and is more flexible [5, 6].

In this study, we conduct integrative analysis under the heterogeneity structure. Although multiple
datasets are allowed to have different sets of markers, as the basis of integrating multiple datasets, it is rea-
sonable to expect that they share some common markers. Further, under certain scenarios, it is of interest
to promote the similarity of model sparsity structures across datasets. As the first example, consider mul-
tiple independent datasets generated under similar protocols [7]. Because of the experimental differences,
the homogeneity structure, which requires the same model sparsity structure across datasets, can be too
restrictive. However, as multiple datasets measure the same set of response variable and covariates, it is
reasonable to expect and hence to encourage multiple datasets to have similar marker sets. The second
example is the analysis of data on different response variables. For example, in the study conducted by
Liu and others [5], each dataset is on the risk of a different cancer type. Despite great differences across
cancer types, multiple genes and pathways have been identified as associated with a large number of can-
cers [8]. Compared with cancer type-specific markers, those shared by multiple cancers are more likely
to define the fundamental characteristics of cancer. Thus, in multi-cancer analysis, it is also of interest
to promote markers to be identified in multiple datasets. The existing methods do not have a mechanism
that explicitly promotes the similarity of model sparsity structures across datasets.

In integrative analysis under the heterogeneity model, we adopt sparse boosting for marker selection
and estimation. Sparse boosting, first developed by Buhlmann and Yu [9] and others, is a family of meth-
ods especially suitable for high-dimensional data and sparse models. This study differs from the existing
sparse boosting studies [4,9,10] by conducting the integrative analysis of multiple datasets and by assum-
ing the heterogeneity structure. The most significant advancement is the introduction of a new penalty
in the boosting algorithm, which explicitly promotes the similarity of model sparsity structures across
datasets. This penalty has a simple form and an intuitive interpretation.

2. Integrative Analysis and Marker Selection using Sparse Boosting

For dataset m(= 1,… ,M), denote Rm(𝛽m) as the loss function. The most fundamental requirement on the
loss is that it leads to a consistent estimate under the “classic” condition with nm >> d. The most common
choice is the negative likelihood function. For models such as the logistic, an intercept term is needed
beyond 𝛽m. We omit the intercept term as it will not be subject to selection and be very easy to deal with.

2.1. Sparse boosting a single dataset

As described earlier, with high-dimensional covariates, we focus on linear covariate effects. Under this
setting, boosting assembles a set of individual covariates (weak learners) into a comprehensive model
(a strong learner, e.g., an effective linear combination of covariates). Advantages of boosting include its
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simple and intuitive form, broad applicability, affordable computational cost, and satisfactory numerical
performance. We refer to Buhlmann and Hothorn [11] and others for comprehensive reviews.

With ordinary boosting, marker selection is achieved with an early stopping. However, Buhlmann and
Yu [9] and several other studies find that the ordinary boosting results may not be “sparse enough”. That
is, too many covariates may be identified as associated with response. Sparse boosting is developed to
tackle this problem. For the integrity of this article, we first present a version of sparse boosting based on
Buhlmann and Yu [9] for the analysis of a single dataset, say dataset m.

Algorithm 0 Sparse boosting a single dataset

Step 1: Initialization. k = 0. Denote 𝛽[k]m as the estimate of 𝛽m in the kth iteration, and its jth component
as 𝛽[k]m,j. Initialize 𝛽

[k]
m,j = 0 for j = 1,… , d. With each component of Xm being a weak learner, the strong

learner is f [k]m = 𝛽[k]
′

m Xm.
Step 2: Fit and update. k = k + 1.
Compute (ŝ, 𝛾̂) = argmin1⩽s⩽d,𝛾

{
Rm

(
𝛽[k−1]

m + 𝛾1s

)
+ pen

(
𝛽[k−1]

m + 𝛾1s

)}
, where 1s is the length-d vec-

tor with the sth component equal to 1 and all others equal to 0. pen(⋅) is the penalty function on model
complexity (more details are provided later).
Update 𝛽

[k]
m,ŝ

= 𝛽
[k−1]
m,ŝ

+ 𝜈𝛾̂ and f [k]m = f [k−1]
m + 𝜈𝛾̂Xm,ŝ, where 𝜈 is the step size. It has been suggested that

the choice of 𝜈 is not critical as long as it is small [9]. We set 𝜈 = 0.1 following published studies.
Step 3: Iteration. Repeat Step 2 for K times. K is a large number.
Step 4: Selection of optimal stopping. At iteration k(= 1,… ,K), compute Fm(k) = Rm

(
𝛽[k]m

)
+

pen
(
𝛽[k]m

)
. Select the optimal number of iterations as k̂ = argmin1⩽k⩽KFm(k). The final strong learner

is f [k̂]m . Covariates corresponding to the nonzero components of 𝛽[k̂]m are identified as associated with the
response.

Different from the ordinary boosting that uses Rm only, the sparse boosting introduces the penalty
function pen(⋅) in selecting the weak learners and optimal stopping. By penalizing model complexity, it
can lead to sparser models. Choices of pen(⋅) include BIC, AIC, minimum description length, and others
[9]. In the literature there is still a lack of investigation on when a penalty is preferred over the others. To
be more flexible, the model complexity penalties in weak learner selection and stopping can be different.

2.2. Integrative sparse boosting multiple datasets

Consider extending sparse boosting to the integrative analysis of M independent datasets. In the inte-
grative analysis under the heterogeneity structure, two-level marker selection is needed [5]. Use similar
notations as for Algorithm 0. We propose the following algorithm.

Algorithm 1 Sparse boosting for integrative analysis

Step 1: Initialization. k = 0. For m = 1,… ,M, initialize 𝛽
[k]
m,j = 0 for j = 1,… , d. The strong learner

for dataset m is f [k]m = 𝛽[k]
′

m Xm.
Step 2: Fit and update. k = k + 1. For m = 1,… ,M:

Compute (ŝ, 𝛾̂) = argmin1⩽s⩽d,𝛾

{
Rm

(
𝛽[k−1]

m + 𝛾1s

)
+ pen

(
𝛽[k−1]

m + 𝛾1s

)}
.

Update 𝛽
[k]
m,ŝ

= 𝛽
[k−1]
m,ŝ

+ 𝜈𝛾̂ and f [k]m = f [k−1]
m + 𝜈𝛾̂Xm,ŝ.

Step 3: Iteration. Repeat Step 2 for K times. K is a large number.
Step 4: Selection of optimal stopping. At iteration k(= 1,… ,K), compute F(k) =∑

m

{
Fm(k) = Rm

(
𝛽[k]m

)
+ pen

(
𝛽[k]m

)}
. Select the optimal number of iterations as k̂ = argmin1⩽k⩽KF(k).

For dataset m, the final strong learner is f [k̂]m . Covariates corresponding to the nonzero components of
𝛽[k̂]m are identified as associated with the response in dataset m.

In integrative analysis, we need to jointly analyze M datasets. In each iteration, we consecutively
apply sparse boosting to each dataset. When selecting the weak learners and updating the strong learners,
multiple datasets are considered separately. However, the stopping rule is selected by jointly considering
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the M datasets. Loosely speaking, this amounts to applying a comparable amount of regularization to all
datasets, which has been suggested in integrative analysis using the penalization technique [5–7].

2.3. Promoting the similarity of model sparsity structures

Algorithm 1 fully relies on data to determine how similar the sparsity structures are. However, there is no
mechanism to encourage the similarity. Denote 𝛽⋅,j = (𝛽1,j,… , 𝛽M,j) as the jth column of 𝛽. We propose
the following algorithm.

Algorithm 2 Sparse boosting for integrative analysis that promotes the similarity
Step 1: Initialization. The same as in Algorithm 1.
Step 2: Fit and update. k = k + 1. For m = 1,… ,M:

Compute

(ŝ, 𝛾̂) = argmin1⩽s⩽d,𝛾

{
Rm

(
𝛽[k−1]

m + 𝛾1s

)
+ pen

(
𝛽[k−1]

m + 𝛾1s

)
+ pens

(
𝛽[k−1] + 𝛾1m,s

)}
.

Here pens(𝛽) = 𝜆 ×
(

1 −
∑

m,j |𝛽m,j|0
M×

∑
j |||𝛽⋅,j||2|0

)
, |u|0 = 1 if u ≠ 0 and = 0 otherwise, 𝜆 ⩾ 0 is a data-

dependent tuning parameter, ||𝛽⋅,j||2 is the 𝓁2-norm of 𝛽⋅,j, and 1m,s is a d × M matrix with (s,m)th
element set to 1.
Update 𝛽

[k]
m,ŝ

= 𝛽
[k−1]
m,ŝ

+ 𝜈𝛾̂ and f [k]m = f [k−1]
m + 𝜈𝛾̂Xm,ŝ.

Step 3: Iteration. Repeat Step 2 for K times. K is a large number.
Step 4: Selection of optimal stopping. At iteration k(= 1,… ,K), compute F(k) =∑

m

{
Fm(k) = Rm

(
𝛽[k]m

)
+ pen

(
𝛽[k]m

)
+ pens(𝛽[k])

}
. Select the optimal number of iterations as

k̂ = argmin1⩽k⩽KF(k).

Advancing from the existing studies, we propose the pens penalty to encourage similarity. In∑
m,j |𝛽m,j|0

M×
∑

j |||𝛽⋅,j||2|0 , the numerator
∑

m,j |𝛽m,j|0 counts how many covariates are selected across the M datasets,

and the denominator
∑

j |||𝛽⋅,j||2|0 counts how many unique covariates are selected. pens is closely related

to the Jaccard index of similarity [12] and takes value in 𝜆×
[
0, 1 − 1

M

]
. It is minimized if the M datasets

identify the same set of covariates and is maximized if there is no covariate identified in more than one
dataset. Thus, it has the capability of promoting similarity. 𝜆 determines the degree of regularization.
When 𝜆 = 0, the proposed method goes back to Algorithm 1. On the other hand, when 𝜆 = ∞, the pro-
posed method reinforces that the same set of covariates is selected in all datasets, that is, the homogeneity
structure, which is an extreme case of the heterogeneity structure. We encounter

∑
j |||𝛽⋅,j||2|0 = 0 in the

first step of boosting. To ensure that the boosting is not “trapped”, we take 0∕0 = 1.
With the proposed method, 𝜆 needs to be determined data-dependently. In addition, we need to specify

a proper pen function for selecting weak learners and a possibly different pen function for stopping. In
the sparse boosting literature [9], multiple pen functions have been suggested. However, there is a lack
of study showing when one may be better than the others [13]. In this study, we adopt the BIC-based
approaches because of their simple forms, broad applicability, and satisfactory numerical performance.

As a specific example, consider a dataset with sample size n and under a linear regression model. With
a specific strong learner, denote the residual sum of squares as RSS and degree of freedom as df . We
adopt the duo

(selection, stopping) = (BIC + pens, HDBIC with or without pens),

where the BIC criterion is log(RSS) + df × log(n)∕n, and the HDBIC criterion is log(RSS) + df ×
log(n) log(d)∕n [14]. Adopting the BIC criterion for selecting weak learners has been motivated by
published studies [13]. The HDBIC criterion imposes more penalty than BIC and can generate sparser
models. In the literature, there are other BIC-type criteria [15]. We adopt the proposed combination
because of its satisfactory performance. It is beyond the scope of this article to comprehensively compare
different model complexity criteria.

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016
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Table I. Analysis of one replicate with nm = 100, d = 100, 𝜌 = 0.2, and half-overlapping marker sets.

Dataset 1 Dataset 2 Dataset 3
Cov Alt.1 Alt.2 New New+ Alt.1 Alt.2 New New+ Alt.1 Alt.2 New New+

1 0.898 0.992 0.961 0.961 0.667 0.692 0.658 0.658 1.144 1.206 1.192 1.192
2 0.968 1.061 1.031 1.031 1.011 1.082 1.069 1.069 0.681 0.751 0.736 0.736
3 0.798 0.774 0.774 0.774 0.635 0.758 0.717 0.717 0.858 0.938 0.903 0.903
4 0.885 0.984 0.958 0.958
5 0.880 0.937 0.921 0.921
6 0.875 1.028 0.984 0.984
7 0.760 0.883 0.857 0.857
8 1.075 1.072 1.072 1.072
9 1.018 1.145 1.103 1.103
10 0.821 0.937 0.906 0.906
11 0.637 0.691 0.656 0.656
12 0.741 0.852 0.808 0.808
19 −0.053
31 −0.058 −0.024
40 −0.030
58 −0.024
77 −0.050 −0.023
92 −0.022 −0.022

All nonzero regression coefficients = 1. For the (selection, stopping) duo: Alt.1=(L2, HDBIC), Alt.2=(BIC, HDBIC),
New = (BIC+, HDBIC), and New+ = (BIC+, HDBIC+). Estimated coefficient in each cell.

We have developed an R program implementing the proposed approach. To illustrate the usage, we
have also provided demo with sample survival datasets. The code and demo are publicly available at
https://github.com/shuanggema/IntSpBoost. The computer time can be potentially reduced by adopting
parallel computing.

To further examine the working characteristics of proposed method, we simulate one replicate with
three independent datasets. More details on the simulation settings are provided in Table I and the next
section. We analyze the simulated data using four different methods. The first two do not have pens and
serve as a reference. More specifically, the first method (Alt.1) is the ordinary boosting and uses Rm(⋅)’s
as the criterion for selection and HDBIC for stopping. The second (Alt.2) is a sparse boosting method and
uses BIC for selection and HDBIC for stopping. There are two versions of the proposed method. One uses
BIC+pens for selection and HDBIC for stopping (New), and the other uses BIC+pens for selection and
HDBIC+pens for stopping (New+). Table I shows that for this specific replicate, the methods New and
New+ yield identical estimates (which is not always true). They outperform Alt.1 and Alt.2 by identifying
fewer false positives. Alt.2 outperforms Alt.1 by using BIC in selecting weak learners.

2.4. Potential extensions

Carefully examining the proposed algorithm suggests that the newly added penalty (for promoting sim-
ilarity of model sparsity structure) is relatively independent of the boosting loss function. Boosting
analysis of censored survival data is definitely not limited to the accelerated failure time (AFT) model.
In Appendix, we also describe applying the proposed strategy to the Cox model, which is more popu-
lar than the AFT model. With high-dimensional data, the disadvantage of the Cox model\ is its higher
computational cost (compared with the AFT model). Another possible extension is to accommodate non-
linear covariate effects using trees as weak learners. In the literature, boosting survival trees has been
investigated in multiple studies. In Appendix, we describe “coupling” boosting survival trees with the
new penalty for promoting similarity in sparsity structure. In the following numerical study, we mostly
focus on the AFT model. In addition, in simulation, we also consider using trees as weak learners, and
in data analysis, we also consider analyzing under the Cox model (results in Appendix).

3. Numerical Study

The proposed method is potentially applicable to a large number of data and model settings and R(𝛽)
functions. As a specific example, we consider right censored survival data under the AFT (accelerated
failure time) model. Details on the data settings and estimation procedure are described in Appendix.

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016
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3.1. Simulation

We simulate M = 3 independent datasets. In each dataset, the sample size is nm = 100. Mimicking
gene expression data, we simulate d = 100, 500, and 1,000 continuously distributed covariates with
a multivariate normal distribution. The marginal means are equal to 0, and the marginal variances are
equal to 1. We consider an auto-regressive correlation structure where covariates j and k have correlation
coefficient 𝜌|j−k| with 𝜌 = 0.2, 0.5, and 0.8, corresponding to weak, moderate, and strong correlations.
In each dataset, there are six covariates with nonzero regression coefficients. Thus, the total number of
truly important covariates is 18. The nonzero regression coefficients are generated from Unif [0.2, 1] or
all equal to 1, representing two levels of signals. Regarding the overlapping of important covariates, we
consider three scenarios: (1) complete overlapping: all three datasets have the same set of six important
covariates. (2) Half overlapping: the three datasets share three common important covariates. In addition,
each dataset has three dataset-specific important covariates. For each dataset, the percentage of shared
important covariates is 50%, (3) none overlapping. There is no important covariate shared by any two
datasets. In the AFT models, the intercepts are set as 0.5. The random errors are simulated from N(0, 𝜎2)
with 𝜎2 = 1 and 3, representing two noise levels. We generate the log censoring times from normal distri-
butions. The censoring distributions are adjusted so that the overall censoring rate is about 33%. To better
gauge the proposed method, we also apply alternative analysis methods. We first consider three alterna-
tive sparse boosting methods: (1) indiv-SB. This method applies sparse boosting (Algorithm 0) to each
dataset separately, and evaluation (as described later) is first separately conducted and then combined.
This method does not account for potential shared information across datasets. (2) Pool-SB: This method
pools the three datasets together and then applies sparse boosting (Algorithm 0). When the datasets are
highly similar, this is expected to be the most effective method. (3) alg1-SB that applies Algorithm 1.
This method is the closest to the proposed. Note that it is also referred to as “Alt.2” in Table I. For the
analysis of high-dimensional data, a large number of regularization methods have been developed. Here,
we compare with penalization, which is one of the most popular regularization methods. We consider
four penalization methods built on the MCP [16], which has been shown to have superior theoretical
and empirical properties. The applied penalization methods include (1) indiv-MCP, which takes a similar
approach as indiv-SB and applies MCP to each dataset separately; (2) pool-MCP, which takes a simi-
lar approach as pool-SB and applies MCP to the pooled dataset; and (3) sgroup-MCP, which applies the
sparse group MCP method [6]. This method has been designed to conduct two-level selection and is suit-
able for the heterogeneity structure and (4) group-MCPT . This method first applies the group MCP [5].
As the group MCP conducts one-level selection and may not be appropriate for the heterogeneity struc-
ture, a thresholding is conducted and sets small estimates as zero. Here, the cutoffs are selected in a way
that the numbers of identified true positives are similar to the proposed method.

As expected, the proposed method is computationally more expensive. However, simulation suggests
that it is still affordable. For example, under the setting described in Table II, indiv-SB and alg1-SB have
similar cost, with the analysis of one replicate taking about 40 s on a regular desktop PC. The pool-SB
analysis takes about 160 s. In comparison, the proposed method takes about 309 s.

For each method and each replicate, we evaluate marker identification performance using TP (number
of true positives) and FP (number of false positives). In addition, we evaluate prediction and estimation
performance. Specifically, prediction is quantified using PMSE (prediction MSE), which is defined as∑

m(𝛽m − 𝛽m)′Var(Xm)
(
𝛽m − 𝛽m

)
∕𝜎2. Estimation is evaluated using EMSE (estimation MSE), which is

defined as
∑

m

(
𝛽m − 𝛽m

)′ (
𝛽m − 𝛽m

)
.

The summary of identification results for the setting with d = 1, 000 and 𝜌 = 0.2 is presented in
Figure 1 (𝜎2 = 1) and Table II (𝜎2 = 1 and 3). The rest of the figures and tables for identification are
presented in Appendix. The estimation and prediction results are separately summarized and also pre-
sented in Appendix. Simulation suggests competitive performance of the proposed method. For example,
in Table II with 𝜎2 = 1 and the nonzero regression coefficients generated from Unif [0.2, 1], the pro-
posed New+ identifies 15.7 (complete overlapping), 13.9 (half overlapping), and 14.9 (non overlapping)
true positives, with a very small number of false positives. Under most of the simulation settings, New+
outperforms the method New with more true positives and fewer false positives. The indiv-SB method
has good performance, however, inferior to the proposed under most of the simulation settings. Its per-
formance is not strongly affected by the overlapping structure, as it analyzes each dataset separately. As
expected, under the complete overlapping scenario, the proposed method has advantages. For example,
under the scenario described earlier and complete overlapping, indiv-SB identifies 13.8 true positives
(compared with 15.7 of the proposed). The pool-SB method reinforces that all datasets identify the same

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016
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Figure 1. Plots of mean TP and FP for simulations with d = 1, 000, 𝜌 = 0.2, and 𝜎2 = 1. The circles stand for
TP and black squares stand for FP.

set of important covariates. It has superior performance under the complete overlapping scenario but poor
performance under the half and none overlapping scenarios. The alg1-SB method, which is similar to the
proposed but does not promote the similarity across datasets, performs inferior to the proposed method.
For example, when 𝜎2 = 1 and the nonzero coefficients are all equal to 1, it identifies 4.9, 5.2, and 4.8
false positives, compared with 0.4, 1.4, and 1.2 with the proposed method. The penalization methods
have reasonable but in general inferior performance. Under quite a few simulation scenarios, indiv-MCP
and group-MCPT identify a relatively large number of false positives (although the performance with true
positives is satisfactory). Similar to pool-SB, pool-MCP has good performance under the complete over-
lapping scenario but behaves poorly under the other two scenarios. The sgroup-MCP method has better
performance than the other three penalization methods but is slightly inferior to the proposed method. In
general, it is observed that the proposed method is favored over the alternatives in terms of identification.
The proposed method also has favorable estimation and prediction results. However, it is also noted that,
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Table III. Simulation: summary statistics on identification when the datasets have different complexity
structures.

(a) (b) (c) (d)

TP FP TP FP TP FP TP FP

𝜌 = 0.2
New 26.5(4.3) 2.0(1.6) 26.1(4.7) 2.9(1.9) 23.4(5.6) 2.3(2.0) 24.8(5.8) 3.0(2.2)
New+ 25.7(7.6) 1.6(1.6) 26.1(4.7) 2.9(2.0) 24.3(4.9) 2.3(2.0) 24.4(6.7) 2.9(2.2)
Alg1-SB 21.3(7.1) 2.2(2.3) 22.9(6.3) 1.9(1.8) 23.3(6.7) 1.9(1.6) 24.3(7.2) 2.6(2.4)
Indiv-SB 15.3(5.2) 2.9(1.9) 13.8(4.6) 2.5(1.6) 15.1(4.5) 1.8(1.5) 16.1(4.3) 1.9(1.7)

𝜌 = 0.5
New 35.2(0.9) 4.7(2.3) 34.9(1.2) 6.9(2.5) 34.4(1.7) 6.8(3.1) 35.1(1.1) 8.3(3.3)
New+ 33.8(1.4) 1.6(1.8) 34.5(1.7) 5.2(2.6) 34.4(1.7) 4.8(2.8) 35.1(1.1) 4.3(3.3)
Alg1-SB 35.2(0.9) 8.3(2.6) 34.6(1.5) 8.2(3.1) 33.8(1.9) 7.1(3.0) 35.0(1.0) 8.2(3.1)
Indiv-SB 35.8(0.7) 3.7(1.6) 34.1(3.9) 3.7(2.2) 33.3(5.1) 2.9(2.0) 35.6(1.3) 4.3(1.7)

𝜌 = 0.8
New 35.4(0.7) 6.3(2.0) 35.2(0.8) 9.5(2.2) 35.0(0.8) 10.1(2.7) 35.2(1.1) 9.5(2.1)
New+ 35.0(1.0) 4.5(1.8) 35.1(1.1) 4.0(2.6) 35.2(0.9) 4.1(1.9) 35.2(1.1) 4.7(2.3)
Alg1-SB 35.3(0.9) 10.4(2.0) 35.0(0.8) 11.2(2.7) 35.1(0.8) 10.3(2.7) 35.2(0.8) 10.6(2.9)
Indiv-SB 35.5(0.6) 2.6(1.3) 35.6(0.5) 3.2(1.3) 35.7(0.6) 2.8(1.8) 35.5(0.5) 2.2(1.4)

In each cell, mean (SD); d = 1, 000.

when factoring in variation, the proposed method and some alternatives may have comparable estimation
and prediction performance.

In the aforementioned simulation, different datasets have the same level of complexity (the same num-
ber of truly important covariates). We also examine the scenario where different datasets have different
complexity structures. Consider the setting with d = 1, 000 and 𝜌 = 0.2, 0.5, and 0.8. As shown in
Figure D18 (Appendix), the three datasets have 6, 12, and 18 truly important covariates, respectively. We
simulate four different overlapping scenarios. Based on the observations described earlier, we analyze
data using the proposed method as well as indiv-SB and alg1-SB. The summary identification results
are shown in Table III. When 𝜌 = 0.5 and 0.8, the proposed method outperforms alg1-SB. Compared
with indiv-SB, it has comparable performance in terms of true positives but slightly more false positives.
When 𝜌 = 0.2, the proposed method significantly outperforms indiv-SB.

Overall, simulation suggests competitive performance of the proposed method. It is interesting to note
that it has satisfactory performance even under the none overlapping scenario. Thus, it provides a “safe”
choice for practical data analysis where the degree of overlapping is unknown. The observed improvement
over the alternative integrative analysis methods is not dramatic, which is reasonable. The newly added
component (which promotes similarity across datasets) accommodates finer or secondary structure of
data. The “first order” selection still depends on the sparse boosting component described in Algorithm 1.

We have also conducted simulation using trees as weak learners to accommodate nonlinear covariate
effects. More details and results are provided in Appendix. This set of simulation demonstrates the broad
applicability of proposed strategy and again the merit of promoting similarity of sparsity structure in
integrative analysis.

3.2. Analysis of breast cancer prognosis studies

Worldwide, breast cancer is the commonest cancer death among women. An estimated 226,870 new
cases of invasive breast cancer were expected to occur among women in the USA in 2012. An estimated
39,510 breast cancer deaths were expected. Multiple profiling studies have been conducted, showing that
genomic markers may be independently associated with prognosis beyond clinical risk factors and envi-
ronmental exposures. Notable findings include the 97-gene signature [17], which includes genes UBE2C,
PKNA2, TPX2, FOXM1, STK6, CCNA2, BIRC5, MYBL2, and others, and the 70-gene signature [18],
which involves the hallmarks of cancer including cell cycle, metastasis, angiogenesis, and invasion.

We collect three gene expression datasets on breast cancer prognosis. The first dataset was initially
described in Huang et al. [19]. Affymetrix chips were used to profile 12,625 genes on 71 samples. The
second dataset was first described in Sotiriou et al. [20]. cDNA chips were used to profile 7,650 genes
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on 98 samples. The third dataset was first described in van’t Veer et al. [18]. Oligonucleotide chips were
used to profile 24,481 genes on 78 samples. We refer to the original publications for more details.

The proposed method has been described for the scenario where the same set of covariates is measured
in all datasets. If a covariate is not measured in a dataset, its corresponding coefficient can be set as
zero [5], and the proposed method is then directly applicable. Most multi-dataset analyses target finding
the similarity/difference across datasets. If a covariate is only measured in one or a few datasets but not
others, it can be difficult or impossible to draw across-dataset conclusion. In the pangenomic era, the
standard platforms conduct whole-genome profiling. In terms of methodology, the similarity of sparsity
structures get less meaningful when the overlaps of measured covariates get smaller. In our data analysis,
we focus on the 2,555 genes measured in all three datasets. With practical data, preprocessing is needed.
With gene expression data, we first conduct normalization. With Affymetrix data, a floor and a ceiling
are added, and then measurements are log2 transformed. For both Affymetrix and cDNA data, there are
a small number of missing values. We fill in using means across samples. We then standardize each gene
expression to have zero mean and unit variance. As with some existing integrative analysis methods [4],
the proposed method does not require direct comparability of measurements in different datasets. Thus,
cross-dataset processing is not needed.

As simulation suggests inferior performance of the penalization methods, we focus on data analysis
using the boosting methods. The estimation results using the six boosting methods are shown in Table IV.
Different methods identify overlapping but different sets of markers. Even for genes identified by multiple
methods (e.g., gene BCKDHB in dataset 1), the estimates can be different. We find that introducing the

overlapping penalty improves similarity across datasets. Specifically, we calculate
∑

m,j |𝛽m,j|0
M×

∑
j |||𝛽⋅,j||2|0 to be 0.33

Table IV. Analysis of the breast cancer datasets: identified genes and estimates.

Unigene Gene Alt.1 Alg1-SB New New+ Indiv-SB Pool-SB

Dataset 1
Hs.100090 TSPAN3 0.067
Hs.101382 TNFAIP2 0.028
Hs.10247 ALCAM 0.063
Hs.153752 CDC25B 0.037 0.037
Hs.106778 ATP2C1 0.059 0.059 0.111 0.100
Hs.111126 PTTG1IP 0.041 0.035
Hs.115617 CRHBP 0.097 0.097 0.131 0.097
Hs.124029 INPP5A 0.045 0.072
Hs.1265 BCKDHB −0.109 −0.109 −0.158 −0.111 −0.109
Hs.151531 PPP3CB −0.051 −0.096 −0.043 −0.191
Hs.153687 INPP4B 0.042 0.079 0.189

Dataset 2
Hs.100090 TSPAN3 0.067
Hs.101382 TNFAIP2 0.028
Hs.10247 ALCAM 0.063
Hs.101813 SLC9A3R2 0.071 0.071 0.037 0.071
Hs.102456 GEMIN2 0.126 0.126 0.128 0.157
Hs.105806 GNLY 0.028 0.028 0.097
Hs.108332 UBE2D2
Hs.1265 BCKDHB 0.008 0.008
Hs.1311 CD1C 0.163 0.202 0.167 0.202

Dataset 3
Hs.100090 TSPAN3 0.034 0.032 0.031 0.067
Hs.101382 TNFAIP2 0.028
Hs.10247 ALCAM 0.063
Hs.100030 TERF2 0.026 0.044 0.022 0.026
Hs.103081 RPS6KB2 0.026 0.025
Hs.106674 BAP1 −0.117 −0.116 −0.077 −0.086
Hs.108332 UBE2D2 −0.063 −0.063 −0.096 −0.035 −0.063
Hs.110707 DCAF8 −0.026 −0.026 −0.025
Hs.1265 BCKDHB −0.006 −0.006

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016
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(Alt.1), 0.33 (alg1-SB), 0.39 (New), 0.67 (New+), and 0.33 (indiv-SB), respectively. Note that under pool-
SB, this measure is always equal to 1. Quick literature search suggests that some of the identified genes,
for example, PPP3CB and BAP1, have important implications in breast cancer progression. However,
there is no objective way of determining which set of markers is “more meaningful”.

We examine the prediction performance of different methods, which may provide some insights into
the analysis results. We randomly split each dataset into a training and a testing set with sizes 3:1. Esti-
mates are generated using the training data and used to make prediction for subjects in the testing sets.
We then dichotomize the testing subjects’ risk scores 𝛽′mXm at the median and create two hypothetical
risk sets. We calculate the logrank test statistic that measures the survival difference between the two
sets. To avoid an extreme split, we repeat the aforementioned process 100 times and calculate the aver-
age logrank statistics as 2.176 (Alt.1), 2.338 (alg1-SB), 4.632 (New), 3.863 (New+), 2.880 (indiv-SB),
and 0.544 (pool-SB), respectively. The proposed method leads to improved prediction performance.

With practical data, the “true” model is unknown. We also analyze data under the Cox model, which
is a popular choice for survival data. More details are provided in Appendix.

4. Discussion

In the analysis of high-dimensional profiling data, integrative analysis provides an effective way of com-
bining multiple datasets and increasing effective sample size and outperforms single-dataset analysis and
classic meta-analysis. In this study, we consider the heterogeneity structure, which is more flexible and
more challenging than the homogeneity structure. Sparse boosting is adopted for marker selection. To the
best of our knowledge, this is the first study applying sparse boosting to the heterogeneity structure. As
described in Introduction, there are scenarios under which it is desirable to encourage the similarity of
sparsity structures across datasets. This study has proposed a new sparse boosting method, which explic-
itly promotes such similarity. The proposed method has an intuitive interpretation and is computationally
feasible. In simulation, it shows competitive performance and can be preferred over the alternative boost-
ing and penalization methods. In the analysis of three breast cancer prognosis datasets, the proposed
method identifies markers different from the alternatives. The identified markers have a higher degree of
similarity across datasets and better prediction performance.

In this article, we have focused on methodological development for marker selection. Practical data
analysis demands extensive additional considerations. Specifically, different studies may have different
research goals and designs. Quality control such as inclusion and exclusion has been discussed for meta-
analysis [21] and is also needed here. The high dimensionality and other complexities of genomic data
make this even more challenging [22]. In addition, it has been observed that prevalence may also affect
selection [23]. We refer to the novel framework of Li and Fine [24] and others for more discussions.
Prior to analysis, preprocessing, for example, matching covariates across datasets and imputing missing
measurements, is needed. The sensitivity of the proposed method on quality control, data selection, and
data processing demands attention in practice. Potentially, there are multiple ways of conducting marker
selection under the heterogeneity structure. In our simulation, we compare against penalization because
of its popularity. We also conjecture that it is possible to couple the proposed penalty on similarity with
the penalization methods. A limitation of this study is that theoretical properties are not established. For
example, the convergence property is unclear, and there is no direct control of the number of selected
markers. We do note that in our extensive simulations, convergence is achieved for all datasets, and
only a small number of markers are identified. The theoretical properties are extremely difficult even
under much simpler settings [9]. The heterogeneity across datasets and the new penalty make theoretical
investigation even more challenging. In data analysis, bioinformatics and biological analysis is needed
to fully comprehend the results.

Appendix A: Estimation under the accelerated failure time model

For survival data, we consider the AFT model. We note that some alternative models, especially the
Cox model, have been more popular for “classic” low-dimensional data. With high-dimensional data, the
simple form, low computational cost, and lucid interpretations of the AFT model make it especially attrac-
tive. This model has been adopted in multiple genetic and genomic studies. Denote T as the logarithm of
failure time. The AFT model assumes that

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016
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T = 𝛼 + 𝛽′X + 𝜖.

𝛼 is the unknown intercept, X is the length-d vector of covariates, 𝛽 is the vector of unknown regression
coefficients, and 𝜖 is the random error. Under right censoring, denote C as the logarithm of censoring
time. We observe (Y = min(T ,C), 𝛿 = I(T ⩽ C),X). Assume n i.i.d. observations.

When the distribution of 𝜖 is known, the parametric likelihood function can be easily constructed.
Here, we consider the more flexible case where this distribution is unknown. The weighted least squares
estimator first proposed by Stute [25] is adopted, as it has statistical properties comparable with but
computational cost lower than, for example, the Buckley–James and rank-based approaches.

Let F̂ be the Kaplan–Meier estimator of the distribution function F of T . F̂(y) =
∑n

i=1 𝜔iI{Y(i) ⩽ y},
where 𝜔i’s can be computed as

𝜔1 =
𝛿(1)

n
, 𝜔i =

𝛿(i)

n − i + 1

i−1∏
j=1

(
n − j

n − j + 1

)𝛿(j)

, i = 2,… , n.

Y(1) ⩽ · · · ⩽ Y(n) are the order statistics of Yi’s, and 𝛿(1),… , 𝛿(n) are the associated censoring indicators.
Denote X(i) as the covariate associated with (Y(i), 𝛿(i)).

The weighted least squares estimator
(
𝛼̂, 𝛽

)
minimizes 1

2n

∑n
i=1 𝜔i

(
Y(i) − 𝛼 − 𝛽′X(i)

)2
. We center X(i)

and Y(i) using their 𝜔i-weighted means, respectively. Define

X̄w =
n∑

i=1

𝜔iX(i)∕
n∑

i=1

𝜔i, Ȳw =
n∑

i=1

𝜔iY(i)∕
n∑

i=1

𝜔i.

Let X𝜔(i) =
√
𝜔i

(
X(i) − X̄w

)
and Y𝜔(i) =

√
𝜔i

(
Y(i) − Ȳw

)
, respectively. With the weighted centered

values, the intercept is zero. The weighted least squares objective function can be rewritten as

1
2n

n∑
i=1

(
Y𝜔(i) − 𝛽′X𝜔(i)

)2
.

Appendix B: Boosting with tree-based weak learners

In the algorithm described in the main text, linear weak learners are considered. Boosting is a very
flexible tool and can also accommodate nonlinear weak learners. As an example, we consider tree-based
weak learners. Boosting survival trees has been studied in multiple published studies. Here, we consider
applying the proposed promoting similarity in sparsity structure to boosting survival trees. Following the
literature, we take simple weak learners where each boosting step considers a single variable for growing
the tree. A popular choice in the literature is stump, which is a tree learner with two terminal nodes [9].
We allow a user-specified maximum depth for growing a tree based on a single variable. The detailed
algorithm is as follows.

When using the tree-based weak learners, different from that in the main text, there is no well-defined
regression coefficient 𝛽. To accommodate this difference, modifications are made to step 2. Specifically,
Hm,s is introduced for calculating pen, and S[k] is introduced to record selection for calculating pens.

We conduct simulation to assess performance of the proposed strategy with tree-based weak learners.
Specifically, we generate M = 3 independent datasets. In each dataset, the sample size is nm = 100, and
the dimension is d = 1, 000. Event times are generated from the model 𝛼 + 𝛽′X2 + 𝜖, where X is the
length-d vector of covariates following a multivariate normal distribution, and 𝛽 is the vector of regression
coefficients. Here, we consider normal errors with zero mean and unit variance. The specifications for
the multivariate normal distribution, 𝛽, and other settings are the same as in Section 3.

For comparison, we also consider two alternative methods: (1) alg1-SB, which applies Algorithm 1
with tree-based weak learners, and (2) indiv-SB, which applies sparse boosting with tree-based weak
learners to each dataset separately. The summary identification results are shown in Table D.18
(Appendix). The overall observed patterns are similar to those with linear weak learners: the proposed
strategy has obvious advantages under the complete overlapping scenario and competitive performance
under the half and none-overlapping scenarios.
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Algorithm 3 (tree): Sparse boosting for integrative analysis with tree-based weak learners
Step 1: Initialization.

Initialize k = 0 and S[0] = 0M×d. For m = 1,… ,M, initialize f [0]m = 0 and B[k]
m = 0nm×nm

.

Step 2: Fit and update. k = k + 1. For m = 1,… ,M:

Compute
(

ŝ, g[k]
m,ŝ

)
= argmin1⩽s⩽d,g[k]m,s

{
Rm

(
f [k−1]
m + g[k]m,s

)
+ pen

(
B[k]

m,s

)
+ pens(S[k−1],s)

}
. Here

g[k]m,s denotes the fitted tree model based on Xm,s with a pre-specified depth. B[k]
m,s is defined as

Inm
−
(
Inm

− B[k−1]
m

)
(Inm

− Hm,s), where Inm
is the nm × nm identity matrix and Hm,s is an nm × nm

symmetric matrix whose (i, j)th element equals one over the subjects that are in the same terminal
node as the ith subject if the ith and jth subjects are in the same terminal node, and zero otherwise.
The matrix S[k−1],s takes the same values as S[k−1] except that the (m, s)th element is 1. To calculate
pen(⋅), trace

(
B[k]

m,s

)
is used as the degree of freedom [9]. pens(⋅) is calculated in the same way as

in Algorithm 2.
Update. Set the (m, ŝ)th element of S[k−1] to 1 and obtain S[k]. Let f [k]m = f [k−1]

m + 𝜈g[k]
m,ŝ

and B[k]
m =

Inm
−
(
Inm

− B[k−1]
m

) (
Inm

− 𝜈Hm,ŝ

)
.

Step 3: Iteration. Repeat Step 2 for K times. K is a large number.
Step 4: Selection of optimal stopping. At iteration k(= 1,… ,K), compute F(k) =∑

m

{
Fm(k) = Rm

(
f [k]m

)
+ pen

(
B[k]

m

)
+ pens(S[k])

}
. Select the optimal number of iterations as

k̂ = argmin1⩽k⩽KF(k).

Appendix C: Boosting under the Cox model

For censored survival data, the most popular model is the Cox model. For high-dimensional data, it has
higher computational cost than the AFT model, making it less advantaged. Later, we describe applying
the proposed strategy to the Cox model.

The Cox model assumes that

𝜆(T) = 𝜆0(T) exp(𝛽′X),

where 𝜆0(T) is the baseline hazard function. Consider dataset m with nm i.i.d. observations
(
Xi

m, t
i
m, 𝛿

i
m

)
for i = 1,… , nm. Here, ti

m denotes the observed time, 𝛿i
m denotes the event indicator, and Xi

m denotes the
covariates. Denote f i

m = 𝛽′mXi
m. The log partial likelihood function is

log PLm(fm) =
nm∑
i=1

𝛿i
m

[
f i
m − log

(
nm∑
j=1

I
(
tj
m ⩾ ti

m

)
ef j

m

)]
.

Consider the loss function Rm(fm) = − log PLm(fm).

Algorithm 4 (Cox): Sparse boosting for integrative analysis under the Cox model
Step 1: Initialization. The same as in Algorithm 1 and 2.
Step 2: Fit and update. k = k + 1. For m = 1,… ,M:

Obtain the working response w[k]
m =

{
wi[k]

m

}nm

i=1
with wi[k]

m = 𝛿i
m −

∑nm

j=1 𝛿
j
m

I
(

ti
m⩾tj

m

)
ef i[k−1]

m∑nm
h=1 I

(
th
m⩾tj

m

)
ef h[k−1]

m
.

For each j = 1,… , d, fit a linear regression of w[k]
m on Xm,j and obtain the coefficients 𝛾̂j. Select ŝ that

minimizes Rm

(
f [k−1]
m + 𝛾̂sXm,s

)
+ pen

(
𝛽[k−1]

m + 𝛾̂1s

)
+ pens

(
𝛽[k−1] + 𝛾̂1m,s

)
. The pen(⋅) and pens(⋅)

are defined the same as in Algorithm 2.
Update 𝛽

[k]
m,ŝ

= 𝛽
[k−1]
m,ŝ

+ 𝜈𝛾̂ and f [k]m = f [k−1]
m + 𝜈𝛾̂Xm,ŝ.

Step 3: Iteration. Repeat Step 2 for K times. K is a large number.
Step 4: Selection of optimal stopping. At iteration k(= 1,… ,K), compute F(k) =∑

m

{
Fm(k) = Rm

(
f [k]m

)
+ pen

(
𝛽[k]m

)
+ pens(𝛽[k])

}
. Select the optimal number of iterations as

k̂ = argmin1⩽k⩽KF(k).
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The aforementioned algorithm is very similar to that for the AFT model. To accommodate the Cox
model, we follow Ridgeway [26] and construct a working response variable.

We also analyze the breast cancer data under the Cox model. The identification and estimation results
are provided in Table D.19 (Appendix). Different sets of genes are identified under the AFT and Cox
models. With high-dimensional data, model diagnostics and specifying model forms are very challenging
and have not been carefully investigated. We leave the selection between AFT and Cox models to future
research. Under the Cox model, the overlapping percentages (which are calculated in the same manner as
under the AFT model) are 0.35 (Alt.1), 0.33 (alg1-SB), 0.43 (New), 0.46 (New+), and 0.33 (indiv-SB),
respectively. Prediction performance is assessed in the same way as under the AFT model. The average
logrank statistics are 3.76 (Alt.1), 3.53 (alg1-SB), 5.03 (New), 5.03 (New+), 3.58 (indiv-SB), and 4.04
(pool-SB), respectively. The proposed approach leads to improved prediction.

Appendix D: Additional tables and figures

Figure D1. Plots of mean TP and FP for simulations with d = 100, 𝜌 = 0.2, and 𝜎2 = 1. The circles stand for TP
and black squares stand for FP.
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Figure D2. Plots of mean TP and FP for simulations with d = 100, 𝜌 = 0.5, and 𝜎2 = 1. The circles stand for TP
and black squares stand for FP.
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Figure D3. Plots of mean TP and FP for simulations with d = 100, 𝜌 = 0.8, and 𝜎2 = 1. The circles stand for TP
and black squares stand for FP.
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Figure D4. Plots of mean TP and FP for simulations with d = 500, 𝜌 = 0.2, and 𝜎2 = 1. The circles stand for TP
and black squares stand for FP.
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Figure D5. Plots of mean TP and FP for simulations with d = 500, 𝜌 = 0.5, and 𝜎2 = 1. The circles stand for TP
and black squares stand for FP.
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Figure D6. Plots of mean TP and FP for simulations with d = 500, 𝜌 = 0.8, and 𝜎2 = 1. The circles stand for TP
and black squares stand for FP.
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Figure D7. Plots of mean TP and FP for simulations with d = 1, 000, 𝜌 = 0.5, and 𝜎2 = 1. The circles stand for
TP and black squares stand for FP.
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Figure D8. Plots of mean TP and FP for simulations with d = 1, 000, 𝜌 = 0.8, and 𝜎2 = 1. The circles stand for
TP and black squares stand for FP.
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Figure D9. Plots of mean TP and FP for simulations with d = 100, 𝜌 = 0.2, and 𝜎2 = 3. The circles stand for TP
and black squares stand for FP.
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Figure D10. Plots of mean TP and FP for simulations with d = 100, 𝜌 = 0.5, and 𝜎2 = 3. The circles stand for
TP and black squares stand for FP.
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Figure D11. Plots of mean TP and FP for simulations with d = 100, 𝜌 = 0.8, and 𝜎2 = 3. The circles stand for
TP and black squares stand for FP.
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Figure D12. Plots of mean TP and FP for simulations with d = 500, 𝜌 = 0.2, and 𝜎2 = 3. The circles stand for
TP and black squares stand for FP.
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Figure D13. Plots of mean TP and FP for simulations with d = 500, 𝜌 = 0.5, and 𝜎2 = 3. The circles stand for
TP and black squares stand for FP.
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Figure D14. Plots of mean TP and FP for simulations with d = 500, 𝜌 = 0.8, and 𝜎2 = 3. The circles stand for
TP and black squares stand for FP.
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Figure D15. Plots of mean TP and FP for simulations with d = 1, 000, 𝜌 = 0.2, and 𝜎2 = 3. The circles stand for
TP and black squares stand for FP.
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Figure D16. Plots of mean TP and FP for simulations with d = 1, 000, 𝜌 = 0.5, and 𝜎2 = 3. The circles stand for
TP and black squares stand for FP.
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Figure D17. Plots of mean TP and FP for simulations with d = 1, 000, 𝜌 = 0.8, and 𝜎2 = 3. The circles stand for
TP and black squares stand for FP.
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Table D.18. Simulation with trees as weak learners: summary statistics on identification.

Complete Half None

TP FP TP FP TP FP

Nonzero coef ∼ unif(0.2,1)
𝜌 = 0.2

New 6.1 (2.3) 3.1 (3.0) 5.3 (2.1) 5.2 (3.4) 4.8 (2.2) 5.2 (2.7)
New+ 6.0 (2.0) 2.5 (2.7) 5.2 (2.2) 4.7 (3.5) 4.8 (2.1) 5.2 (2.8)
Alg1-SB 4.9 (1.5) 5.6 (2.9) 5.1 (2.1) 6.0 (2.8) 4.9 (2.3) 5.2 (2.8)
Indiv-SB 4.8 (1.4) 4.3 (1.9) 5.3 (2.0) 4.7 (2.1) 5.2 (1.9) 4.7 (2.1)

𝜌 = 0.5
New 8.4 (2.8) 1.2 (1.7) 7.2 (2.0) 2.8 (2.0) 7.0 (1.8) 4.1 (1.7)
New+ 8.8 (3.5) 0.9 (1.5) 7.1 (1.7) 2.6 (2.2) 7.0 (1.9) 4.0 (1.7)
Alg1-SB 7.3 (1.9) 3.4 (2.4) 6.7 (1.8) 4.3 (2.1) 7.0 (1.8) 4.1 (1.6)
Indiv-SB 7.2 (1.7) 2.6 (1.4) 7.1 (1.9) 3.6 (1.9) 6.8 (2.0) 2.7 (1.6)

𝜌 = 0.8
New 12.1 (3.2) 0.9 (1.6) 11.2 (2.3) 1.9 (1.3) 12.9 (1.6) 2.3 (1.9)
New+ 12.4 (3.2) 0.5 (0.8) 10.8 (3.0) 1.5 (1.3) 13.0 (1.8) 2.4 (2.1)
Alg1-SB 13.1 (2.0) 1.9 (1.6) 11.3 (2.2) 2.2 (1.3) 12.8 (1.8) 2.2 (1.7)
Indiv-SB 12.8 (2.0) 1.4 (1.5) 10.8 (1.9) 1.3 (1.0) 12.8 (1.8) 1.5 (1.4)

Nonzero coef = 1
𝜌 = 0.2

New 7.4 (2.7) 4.4 (3.5) 6.5 (1.7) 5.1 (3.2) 6.1 (2.4) 8.2 (2.7)
New+ 6.9 (2.7) 3.9 (3.4) 6.3 (1.7) 4.9 (3.3) 5.9 (2.4) 8.2 (2.8)
Alg1-SB 6.1 (1.8) 8.8 (3.5) 5.8 (1.5) 8.1 (3.1) 6.1 (2.4) 8.3 (2.8)
Indiv-SB 6.1 (1.9) 7.5 (3.0) 6.0 (1.6) 7.4 (2.3) 6.1 (2.3) 7.5 (3.2)

𝜌 = 0.5
New 11.3 (3.0) 1.7 (1.6) 9.0 (2.1) 4.0 (2.1) 8.7 (2.1) 4.7 (1.7)
New+ 11.0 (3.6) 1.3 (1.7) 9.0 (2.4) 4.3 (2.9) 8.7 (2.1) 4.8 (1.8)
Alg1-SB 9.2 (2.0) 4.8 (2.2) 8.8 (2.3) 5.3 (2.1) 8.7 (2.1) 4.8 (1.8)
Indiv-SB 9.2 (2.1) 4.4 (2.0) 8.3 (2.0) 4.2 (2.1) 8.6 (2.4) 3.9 (1.6)

𝜌 = 0.8
New 15.4 (2.0) 1.7 (2.3) 14.2 (1.6) 2.7 (1.7) 15.2 (1.4) 3.2 (1.9)
New+ 15.1 (3.0) 0.9 (1.8) 13.9 (2.7) 2.3 (1.9) 15.3 (1.5) 3.2 (1.8)
Alg1-SB 15.4 (1.5) 3.2 (2.6) 14.2 (1.5) 3.1 (2.1) 15.3 (1.5) 3.1 (1.8)
Indiv-SB 15.0 (1.8) 2.5 (2.4) 13.4 (2.0) 2.0 (1.7) 15.0 (1.6) 2.7 (2.5)
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Figure D18. Four simulation scenarios where datasets have different complexity structures. The grey cells
correspond to covariates with nonzero coefficients.
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Table D.19. Analysis of the breast cancer datasets: identified genes and
estimates under the Cox model.

UniGene Alt.1 alg1-SB New New+ indiv-SB pool-SB

Dataset 1
Hs.646 −0.187
Hs.19413 0.227 0.292
Hs.19699 −0.135
Hs.25351 −0.179 −0.287 −0.393 −0.343 −0.287
Hs.75149 −0.049 −0.117 −0.117
Hs.78881 −0.204 −0.342 −0.367 −0.257 −0.271
Hs.82548 0.073 0.305 0.392 0.308 0.305
Hs.95821 0.211
Hs.154443 0.057
Hs.154797 −0.093
Hs.274382 −0.061 −0.030 −0.030
Hs.288319 0.025
Hs.431584 −0.160 −0.518 −0.560 −0.419 −0.428

Dataset 2
Hs.646 −0.034 −0.187
Hs.2421 −0.032
Hs.15303 −0.109 −0.536 −0.544 −0.489 −0.296
Hs.19699 −0.135
Hs.25351 0.011 0.011
Hs.82548 −0.032 −0.015 −0.015
Hs.89506 0.032
Hs.95821 0.053 0.255 0.278 0.211
Hs.154443 0.088 0.057
Hs.154797 −0.013 −0.013 −0.093
Hs.407372 0.087

Dataset 3
Hs.646 −0.187
Hs.1578 0.047 0.070 0.070
Hs.14541 0.067
Hs.19699 −0.135
Hs.75617 0.022
Hs.89399 −0.049
Hs.95821 0.211
Hs.154443 0.057
Hs.154797 −0.185 −0.556 −0.635 −0.448 −0.565 −0.093
Hs.177584 0.163 0.421 0.466 0.315 0.442
Hs.206770 0.085 0.509 0.598 0.401 0.528
Hs.301094 −0.021

In each cell, mean (SD); d = 1, 000.
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