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Summary
High-throughput gene profiling studies have been extensively conducted, searching for markers
associated with cancer development and progression. In this study, we analyse cancer prognosis
studies with right censored survival responses. With gene expression data, we adopt the weighted
gene co-expression network analysis (WGCNA) to describe the interplay among genes. In
network analysis, nodes represent genes. There are subsets of nodes, called modules, which are
tightly connected to each other. Genes within the same modules tend to have co-regulated
biological functions. For cancer prognosis data with gene expression measurements, our goal is to
identify cancer markers, while properly accounting for the network module structure. A two-step
sparse boosting approach, called Network Sparse Boosting (NSBoost), is proposed for marker
selection. In the first step, for each module separately, we use a sparse boosting approach for
within-module marker selection and construct module-level ‘super markers ’. In the second step,
we use the super markers to represent the effects of all genes within the same modules and
conduct module-level selection using a sparse boosting approach. Simulation study shows that
NSBoost can more accurately identify cancer-associated genes and modules than alternatives. In
the analysis of breast cancer and lymphoma prognosis studies, NSBoost identifies genes with
important biological implications. It outperforms alternatives including the boosting and
penalization approaches by identifying a smaller number of genes/modules and/or having better
prediction performance.

1. Introduction
High-throughput gene expression profiling studies have been extensively conducted,
searching for markers associated with the development and progression of cancer. In this
study, we analyse cancer prognosis studies, where the outcome variables are progression-
free, overall, or other types of survival. In many cancer gene expression studies especially
the early ones, it has been assumed that genes have interchangeable effects (Knudsen, 2006).
Biomedical studies have shown that there exists inherent coordination among genes and,
essentially, all biological functions of living cells are carried out through the coordinated
effects of multiple genes. There are multiple ways of describing the interplay among genes.
The most popular ways are gene pathways and networks (Casci, 2010). Compared with
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pathway analysis, network analysis sometimes can be more informative as it describes not
only whether two genes are connected but also the strength of connection. In addition, some
network analysis methods can analyse all genes, whereas many pathway analysis methods
focus on the annotated genes only. On the negative side, unlike with pathways, research
linking specific network structures with biological functions remains scarce. In the literature,
there is no definitive evidence on the relative performance of pathway and network analysis
methods. Here, we focus on developing a network analysis method and refer to other studies
for discussions and comparisons of pathway and network analyses.

In network analysis, nodes represent genes. Nodes are connected if the corresponding genes
have co-regulated biological functions or correlated expressions. There are multiple ways of
constructing gene networks. For example, directed, biological networks can be constructed
based on the results of knockout experiments. The weighted gene co-expression network
analysis (WGCNA: http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/),
which is adopted in this study, is based only on gene expression data and does not demand
additional experiments. There are multiple model-based approaches, using the Akaike
information criterion (AIC), multi-model inference (MMI), Bayesian model selection and
averaging or minimum description length (MDL) as the network construction criteria.
Friedman et al. (2008) proposed network construction using a penalization approach. More
recently, Maathuis et al. (2010) investigated directed networks when the biological
information is partially available. A sparse singular value decomposition-based method has
also been proposed for network construction (Jornsten et al., 2011). In addition, multiple
approaches have been proposed to compute the connectedness measure between pairs of
genes. See for example Langfelder & Horvath (2007), Saris et al. (2009) and references
therein. Published studies have suggested that the network connectedness measure may have
important implications. For example, hub genes, which are genes ‘well connected’ with a
large number of genes, tend to have important biological functions. There are subsets of
nodes, called modules, which are tightly connected to each other. Genes within the same
modules tend to have coordinated biological functions, whereas genes in different modules
tend to have different, unrelated biological functions.

Statistical methods that can accommodate the high dimensionality of cancer gene expression
data can be roughly classified as dimension reduction and variable selection methods. Both
families of methods have been employed in network analysis. Dimension reduction methods
search for linear combinations of all genes or genes within the same modules as cancer
markers. In Ma et al. (2011), principal component analysis is used for network-based
dimension reduction. Such methods may have satisfactory prediction performance but often
suffer a lack of interpretability. In addition, they contradict the fact that not all genes are
involved in cancer development and progression. Variable selection methods search for a
subset of genes as markers and may be more interpretable. A network thresholding
regularization method is proposed in Ma et al. (2010b). Huang et al. (2011a) proposed a
penalization method for network variable selection (see references therein for more
penalization network analyses). In this article, we focus on the development of a network
variable selection method and refer to other publications for comprehensive discussions and
comparisons of dimension reduction and variable selection methods.

The rest of the article is organized as follows. In Section 2, we first describe the WGCNA.
We describe prognosis using an accelerated failure time (AFT) model and adopt a weighted
least squares estimation approach. We then develop the NSBoost approach for gene
selection. Simulation study in Section 3 demonstrates satisfactory performance of the
proposed approach. Four cancer prognosis studies are analysed in Section 4. The article
concludes with discussion in Section 5. Some additional analysis results are provided in
Appendices.
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2. Methods
(i) Network construction

As described in Section 1, there are multiple ways of building gene networks. They can be
roughly classified as biological and statistical constructions. Different statistical construction
methods rely on different, usually unverifiable data and model assumptions. To the best of
our knowledge, in the literature there is still a lack of definitive evidence on the relative
performance of different network construction methods. The WGCNA approach is built on
the understanding that the coordinated co-expressions of genes encode interacting proteins
with closely related biological functions and cellular processes. Detailed investigations of
WGCNA have been conducted by Dr Steve Horvath and his group at UCLA. Published
studies suggest that modules in the weighted co-expression network have important
biological implications. Genes with a higher connectivity are more likely to be involved in
important molecular processes. In addition, incorporating connectivity in the detection of
differentially expressed genes can lead to significantly improved reproducibility. For
integrity of this study, we describe the WGCNA algorithm below and refer to (WGCNA) for
more details.

1. Assume that there are d genes. For genes k and j(=1,…, d), compute cor(k, j), the
Pearson correlation coefficient of their expressions. Compute the similarity
measure S(k, j)=|cor(k, j)|.

2. Compute the adjacency function ak,j=Sb(k, j), where the adjacency parameter b is
chosen using the scale-free topology criterion. In our data analysis, we find that
b=6, which has been suggested in several published studies, lead to satisfactory
results.

3. For gene k, compute its connectivity Ck=Σuak, u.

4. For gene k(=1, …, d), compute the topological overlap-based dissimilarity measure
dk,j=1 − wk, j, where wk,j=(lk, j+ak, j)/(min(Ck,Cj)+1 − ak, j) and lk, j=Σu ak, uaj, u.
Define the dissimilarity matrix D, whose (k, j)th element is dk, j.

5. Identify network modules using matrix D and the hierarchical clustering approach.
Apply the dynamic tree cut approach (Langfelder et al., 2008) to cut the clustering
tree (dendrogram), and identify the resulting branches as modules. Denote M as the
number of modules and S(m) as the size of module m(=1, …, M).

Several quantities are defined in the above algorithm. In the downstream analysis, we use
the ‘final product’ – modules constructed in Step 5. As can be seen from the algorithm, the
construction of WGCNA is computationally simple. A user-friendly R package is available
for implementation (http://cran.r-project.org/web/packages/WGCNA/index.html). A
significant advantage of WGCNA is that it is completely inferred from gene expression
measurements of a single study and hence does not demand a large amount of biological
experiments. On the negative side, it is built on the estimated covariance matrix. In a typical
cancer gene expression study, with the sample size significantly smaller than the number of
genes, the uniform consistency of the covariance matrix estimation is debatable. Thus,
unlike some other ways of describing gene interplay (e.g. pathways), the weighted co-
expression network structure may vary across studies with comparable setup.

(ii) Statistical modelling
Let Ti be the logarithm of survival time and Xi be the d-dimensional gene expressions for
the ith subject in a random sample of size n. The AFT model assumes that
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where α is the intercept, βεRd is the unknown regression coefficient and εi is the random
error. Under right censoring, one observation consists of (Yi, δi and Xi), where Yi=min(Ti,
Ci), Ci is the logarithm of censoring time and δi=I(Ti ≤ Ci) is the censoring indicator. In the
AFT model, the logarithm transformation can be replaced with another monotone
transformation. The log transformation is the most commonly adopted in the literature and
generates reasonable results with data analysed in this study. When the distribution of
random error is known, the parametric likelihood function can be easily constructed, and
likelihood-based approaches are more efficient than the one described below. Here, we
consider the more flexible case with an unknown random error distribution.

The AFT model provides a flexible alternative to the Cox proportional hazards model (Wei,
1992). It assumes a linear function for the log-transformed survival time and may provide a
more straightforward description of gene effects on survival than alternatives (e.g. the Cox
model, which describes the survival hazard). There are multiple approaches for estimating
the AFT model with an unspecified error distribution. Examples include the Buckley–James
estimator, which adjusts censored observations using the Kaplan–Meier estimator, and the
rank-based estimator, which is motivated by the score function of the partial likelihood
function. With high-dimensional gene expression data, those approaches suffer a high
computational cost. A computationally more feasible approach is the weighted least squares
approach (Stute, 1993). Denote F̂n as the Kaplan–Meier estimator of F, the distribution

function of T. It can be computed as . Here, wi/s are the jumps in
the Kaplan–Meier estimator computed as w1=δ(1)/n and

. wi/s have also been referred to as
the Kaplan–Meier weights (Stute, 1993). Y(1) ≤⋯≤ Y(n) are the order statistics of Yi/s, δ(1),
…, δ(n) are the associated censoring indicators, and X(1), …, X(n) are the associated gene
expressions. The weighted least squares loss function is

We centre X(i) and Y(i) using their corresponding wi-weighted means, respectively. Let

. Denote

. We can rewrite the weighted least squares loss
function as

The simple form of this loss function makes it computationally affordable and suitable for
high-dimensional gene expression data.

(iii) Gene selection with NSBoost
The proposed NSBoost approach belongs to the family of boosting approaches. Boosting
assembles a strong learner using a set of weak learners (Anjum et al., 2009; Hastie et al.,
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2009; Ma et al., 2012; Schapire & Freund, 2012). It is appropriate for cancer genomic data
as individual genes usually have weak effects, but combined together, they may have strong
effects. NSBoost is a variable selection approach and thus can have better interpretability
than dimension reduction approaches. Compared with thresholding regularization, it has a
better defined statistical framework. Compared with penalization, it may have lower
computational cost.

(a) Rationale—With NSBoost, marker selection is achieved in two steps. This two-step
strategy shares a similar spirit with that in Ma et al. (2007). With WGCNA, genes can be
separated into non-overlapping modules (note that the proposed approach is also applicable
to network construction methods with overlapping modules). In the first step, each module is
analysed separately. Genes within different modules tend to have different biological
functions. Thus, it is sensible to analyse each module separately in the sense that different
biological functionalities should be considered separately. On the other hand, genes within
the same modules never have identical biological functions. Thus, we propose conducting
within-module selection and search for genes that are associated with cancer prognosis
within a group of functionally related genes. For a specific module, this step of selection can
not only remove noises but also lead to the construction of a super marker, which is a linear
combination of selected genes and can represent effects of all genes within this module. The
introduction of super marker shares a similar spirit with that in Ma et al. (2011). In the
second step, we consider the joint effects of all super markers and hence all modules. In
whole-genome studies, it is reasonable to expect that only a subset of modules is cancer
associated. It is thus necessary to conduct the second step of selection and discriminate
cancer-associated modules from noises. With the proposed two-step approach, we may
identify which modules are cancer-associated as well as which genes are cancer-associated
within selected modules.

In both steps, marker selection is achieved using a sparse boosting approach. In high-
dimensional data analysis, boosting may be preferred because of its low-computational cost,
flexibility and satisfactory empirical performance. With ordinary boosting, when the
stopping rule is properly chosen, the resulted strong learner may enjoy a certain degree of
sparsity, and so marker selection can be achieved. This can be seen from Dettling &
Buhlmann (2003) and follow-up studies as well as our numerical study. However, recent
studies (Buhlmann & Yu, 2006; Huang et al., 2011b) suggest that with high-dimensional
data, ordinary boosting may not be ‘sparse enough’. That is, it may identify a considerable
number of false positives. The sparse boosting approach adopted here has been motivated by
Buhlmann & Yu (2006). In particular, the objective function used for boosting and stopping
has two terms. The first term measures goodness-of-fit, which is the same as ordinary
boosting. The second, additional term measures model complexity. In particular, we adopt a
Bayesian information criterion (BIC) for model complexity measure. As ordinary boosting
only considers goodness-of-fit, it may introduce noisy variables (false positives) that happen
to be able to slightly improve goodness-of-fit. With sparse boosting, the introduction of the
model complexity measure can lead to sparser models and hence reduce the number of false
positives. On the negative side, sparse boosting can be computationally more expensive than
ordinary boosting as the model complexity measure and hence the whole objective function
is not differentiable and cannot be minimized using gradient-based approaches. The sparse
boosting approach adopted in this study differs from those in Buhlmann & Yu (2006) and
Huang et al. (2011b). Particularly, previous studies focus on continuous and categorical
data, whereas we analyse censored survival data, which can be more complicated. The
adopted BIC has been more commonly adopted as a model complexity measure than the
MDL. In addition, by conducting multi-step sparse boosting, the proposed approach can
effectively accommodate the network module structure. The detailed algorithm is as follows.

Ma et al. Page 5

Genet Res (Camb). Author manuscript; available in PMC 2013 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(b) Algorithm—We first rearrange gene expressions so that β=(β1′, …, βm′)′, where βm

is the length S(m) vector of regression coefficients for all genes within module m. Denote

 as the jth component of βm and  as the component of  that corresponds to βm.

Step I: Within-module boosting. For m=1, …, M, consider the objective function

, which is l(β) evaluated only on genes within the mth module. This
is equivalent to the objective function obtained from fitting an AFT model using only the
mth module.

a. Initialization. Set k=0 and βm[k]=0 (component-wise).

b. Fit and update. k=k+1. Compute

. Compute . Update

, where ν is the step size. As
suggested in Buhlmann & Yu (2006) and references therein, the choice of ν is not
critical as long as it is small. In our numerical study, we set ν=0.1. In numerical
study, we have experimented with a few other step size values and reached almost
identical results.

c. Iteration. Repeat step (b) for K iterations.

d. Stopping. At iteration k, compute the objective function

. Estimate the
stopping iteration by k̃m=arg min1≤k≤K Fm(k). For subject i, define its module m

‘super marker’ as .

Step II : Module-wise boosting. Consider the objective function

 and τ=(τ1, …, tM)′ is the unknown
regression coefficient. That is, in the least squares objective function, we use the super
markers, which represent the effects of all genes within the same modules, to replace the
original gene expressions.

a. Initialization. Set k=0 and τ[k]=0 (component-wise).

b. Fit and update k=k+1. Compute

. Compute . Update  for s≠ŝ

and  where ν=0.1 is the step size.

c. Iteration. Repeat Step (b) for K iterations.

d. Stopping. At iteration k, compute the objective function

. Estimate the stopping
iteration by k̂=arg min1≤k≤KF(k).
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 is the resulted strong learner for . Genes and modules
with nonzero regression coefficients in the strong learner are identified as associated with
cancer.

(c)Parameter path—Parameter path, which is the graphical presentation of the estimates
as a function of number of iterations, may provide further insights into NSBoost. Consider
the simulation setting corresponding to row 1 of Table 1. For a better view, we simplify the
simulation setting and consider four modules with four genes per module. The first two
modules are cancer associated, within which there are two cancer-associated genes. Thus,
among the 16 simulated genes, four are associated with cancer. For comparison, we also
study Network Boosting (NBoost, details described in Section 3). For a randomly generated
dataset, the parameter paths are shown in Figs 1 (NSBoost) and 2 (NBoost), respectively.

Within each module, the parameter paths of NSBoost are similar to those of other
regularized variable selection approaches (Hastie et al., 2009). By considering model
complexity in boosting, the NSBoost parameter paths are ‘smoother’ than their NBoost
counterparts. NBoost does not consider model complexity in boosting and thus may have a
risk of false positives. For example, in the top right panel of Fig. 2a, NBoost has one false
positive, while NSBoost does not. Our limited numerical study suggests that, in the within-
module boosting step, NSBoost may identify ‘signals ’ even with purely noisy modules.
Thus, the module-level boosting is conducted, which can effectively remove noisy modules
as a whole (Fig. 1b). With a combination of the two boosting steps, NSBoost can be sparser
than NBoost at both within-module level and module level. We note that the parameter paths
are presented for a small dataset and are only meant to provide a graphical presentation.
More meaningful comparisons with larger datasets are presented in Sections 3 and 4.

3. Simulation
We conduct simulation to better gauge properties of the proposed approach. In each
simulated dataset, there are 100 subjects. We simulate 50 gene clusters with 20 genes in
each cluster. Gene expressions have marginally standard normal distributions. Genes within
different clusters have independent expressions. For genes within the same clusters, their
expressions have the following correlation structures: (1) auto-regressive correlation, where
expressions of genes j and k have correlation coefficient ρ|j−k|. ρ =0·3 or 0·7, corresponding
to weak and strong correlations ; (2) banded correlation, where expressions of genes j and k
have correlation coefficient max(0,1 − |j − k|ρ). ρ = 0·2 or 0·33; and (3) compound
symmetry, where expressions of genes j and k have correlation coefficient ρ when j≠k, ρ
=0·3 or 0·7. With each simulated dataset, we generate network modules using WGCNA. We
find that when the within-cluster correlation is strong, the resulted modules tend to be
correlated with the simulated clusters. On the other hand, when the within-cluster correlation
is weak, there are considerable discrepancies between the WGCNA modules and simulated
clusters. We consider two scenarios for the prognosis-associated genes. Within each of the
first four (or two) modules, the first five genes are associated with survival. There are thus a
total of 20 (or 10) cancer-associated genes, and the rest are noises. For cancer-associated
genes, we generate their regression coefficients from Unif[0·5, 1·5]. Thus, some genes have
large effects, and others have moderate to small effects. For a subject, we generate the
logarithm of survival time from the AFT model with intercept equal to zero. The logarithm
of censoring time is independently generated from a normal distribution with variance one.
We adjust the mean of the censoring distribution by trial and error so that the average
censoring rate is about 40%. To better gauge performance of the proposed approach, we also
consider the following alternatives:
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1. Enet (elastic net) (Zou & Hastie, 2005), which is a penalization approach and has
been extensively used in the analysis of gene expression data.

2. Boost, which is an ordinary boosting approach and takes goodness-of-fit as the only
criterion for choosing weaker learners. A BIC similar to that with NSBoost is
adopted for stopping.

3. SBoost, which is a sparse boosting approach and considers goodness-of-fit as well
as model complexity measured using a BIC in boosting and stopping.

4. NBoost, which is a network boosting approach and has a two-step algorithm similar
to that with the proposed approach. The difference is that in boosting only
goodness-of-fit is considered when choosing weaker learners.

Among the four alternative approaches, the first three ignore the network structure and treat
all gene effects as interchangeable. The NBoost approach respects the network structure,
however, puts less emphasis on sparsity. We are aware that a large number of approaches
can be used to analyse the simulated data. The above four approaches are chosen for
comparison, as Enet is one of the most extensively used penalization approaches and
particularly includes Lasso and ridge penalization as special cases and, as the Boost, SBoost
and NBoost approaches have boosting frameworks closest to that of NSBoost.

Summary statistics, including medians and standard deviations, based on 200 replicates are
presented in Table 1. We can see that the Enet and Boost approaches can identify all of the
true positives. However, under some scenarios, they may identify a considerable number of
false positives. SBoost, which considers model complexity in boosting but ignores the
network structure, is ‘overly sparse ’ by having a considerable number of false negatives.
Without accounting for model complexity in boosting, NBoost identifies a large number of
false positives. Under all simulated scenarios, NSBoost has the best performance in terms of
module and gene identification accuracy. It is capable of identifying the majority or all of
the true positives while having a small number of false positives. We have also
experimented with a few other simulation settings and reached similar conclusions.

4. Data analysis
We collect four cancer prognosis studies with gene expression measurements. Brief
descriptions are provided in Table 2 and below. We refer to the original publications for
more details.

D1. Breast cancer is the second leading cause of cancer death among women in the United
States. Sorlie et al. (2001) conducted a gene expression profiling study, investigating
whether it was feasible to classify breast carcinomas based on gene expression patterns.
cDNA profiling of 85 samples was conducted, showing that breast cancer could be classified
into a basal epithelial-like group, an ERBB2-overexpressing group, and a normal breast-like
group. Among the 85 samples, 58 had survival information available and will be analysed in
this study.

D2. Despite major progress in treatment, the ability to predict metastasis of breast tumours
remains limited. Huang et al. (2003) reported a study investigating metastatic states and
relapses in breast cancer patients. Affymetrix genechips were used for the profiling of 71
samples. Both D1 and D2 are on breast cancer prognosis. However, as suggested in multiple
publications great heterogeneity may exist across studies, we choose to analyse D1 and D2
separately.
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D3. Diffuse large B-cell lymphoma (DLBCL) is a cancer of the B-cell. It accounts for ~40%
of all non-Hodgkin lymphoma (NHL) cases. A DLBCL gene expression study was reported
in Rosenwald et al. (2002). This study retrospectively collected tumour biopsy specimens
and clinical data for 240 patients with untreated DLBCL. The median follow up was 2·8
years, with 138 observed deaths. Lymphochip cDNA microarray was used to measure the
expressions of 7399 genes.

D4. Mantle cell lymphoma (MCL) accounts for ~8%of all NHLs. Rosenwald et al. (2003)
reported a gene expression study of MCL survival. Among 101 untreated patients with no
history of previous lymphoma, 92 were classified as having MCL based on morphologic and
immunophenotypic criteria. Survival times of 64 patients were available, and the rest were
censored. The median survival time was 2·8 years. Lymphochip DNA microarrays were
used to quantify mRNA expressions in the lymphoma samples. Gene expression data on
8810 cDNA elements were available.

Among the four studies, one used Affymetrix and three used cDNA for profiling. We
process the datasets as follows. We conduct normalization using the lowess approach for
cDNA data and the robust multi-array (RMA) approach for Affymetrix data. Missing
measurements are imputed using the K-nearest neighbours approach. Affymetrix gene
expression measurements are log 2 transformed. We select the 500 genes with the largest
variances for downstream analysis. Here, the pre-screening may serve multiple purposes.
First in cancer gene expression studies, usually genes with higher variations are of more
interest. Second, it is expected that the number of cancer prognosis-associated genes is far
smaller than 500. Pre-screening may remove genes that are highly unlikely to be cancer-
associated and significantly reduce computational cost. More importantly, as described
above, the WGCNA approach involves estimating covariance matrices. Pre-screening may
significantly reduce the dimensionality of such matrices and improve estimation accuracy.
Note that the number of screened genes can be somewhat subjective. In the pre-screening
literature, there is still a lack of guideline on how many genes should be screened. With the
selected genes, we normalize their expressions to have median zero and variance one.

With datasets D1–D4, the WGCNA approach constructs 5, 4, 6 and 6 modules, respectively.
For dataset D4, we show the module construction result in Fig. A.1 (Appendix I). Results for
other datasets are available with the authors.

We apply the NSBoost approach. The identified genes and corresponding estimates are
provided in Appendix II. Searching PubMed suggests that some of the identified genes have
been suggested as cancer markers in published studies. Detailed interpretations of the
identified genes are provided in Appendix III. Note that here we investigate the implications
of identified genes individually. With the proposed approach, we conduct selection at the
module level as well as the individual gene level. Thus, gene level interpretation is
meaningful. In addition, research that links network modules to specific biological functions
is extremely limited. As there is no strong correspondence between network modules and
pathways, pathway analysis may not be very sensible. Evaluation of the biological
implications deserves more investigation in future research.

(i) Analysis with alternative approaches
We apply the four alternative approaches described in the Simulation section. Summary
analysis results for all approaches are presented in Table 3. By conducting the module-level
sparse boosting and hence encouraging sparsity at the module level, NSBoost identifies the
smallest number of modules, which may lead to more focused hypotheses for downstream
analysis. Genes identified by NSBoost differ significantly from those identified using Enet,
Boost and SBoost. For example for dataset D1, the numbers of overlapped genes are 4, 5
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and 3, respectively. The sets of genes identified by NBoost and NSBoost are more similar,
which is as expected, as both approaches use boosting for marker selection and account for
the module structure. For example for dataset D1, the number of overlapped genes is 23.
Although discussions in Appendix III show that the NSBoost identified genes are
biologically meaningful, with our limited understanding of cancer genomics, we are unable
to determine whether they are ‘more meaningful ’ than the other sets of identified genes. As
an alternative, we examine the prediction performance of different approaches, which
proceeds as follows: (1) randomly split data into a training set and a testing set with sizes 3 :
1; (2) analyse the training data and identify markers. A natural by-product of the proposed
approach is a prediction model; (3) make prediction for subjects in the testing set. The
predictive model can lead to a predicted risk score X′β for each subject. Dichotomize the
risk scores at the median and create two risk groups. Compute the logrank statistic, which
measures the survival difference between the two groups; (4) to avoid an extreme partition,
repeat steps (1)–(3) 100 times, and compute the average logrank statistic. Table 3 shows that
with the four analysed datasets, NSBoost has the largest logrank statistics and hence the best
performance in separating subjects into groups with different survival risks.

5. Discussion
In cancer genomic studies, an important goal is to identify markers associated with
prognosis. There exists inherent coordination among genes, and network provides an
effective way of describing such coordination. In this study, we adopt the weighted gene co-
expression network and develop a two-step sparse boosting approach to account for the
network structure in cancer marker selection. The proposed approach is intuitively
reasonable. Simulation and data analysis demonstrate its satisfactory performance.

As shown in multiple published studies, network modules may have important biological
implications. The proposed approach respects the network module structure and can be more
informative than alternatives that ignore such structure. Another advantage of the proposed
approach is its computational affordability. As can be seen from the algorithm, only simple
calculations are involved. In the within-module boosting, the number of genes per module
can be much smaller than the total number of genes. In addition, this step can be carried out
in a parallel manner. Thus, the first step of boosting has computational cost much smaller
than that of ordinary boosting with all genes. With WGCNA, the number of modules (and
hence super markers) is usually not large. Numerical studies in Ma et al. (2010b, 2011)
suggest less than 20. Thus, the computational cost of the second step of boosting is almost
negligible. The proposed approach also has the advantage that its applicability is relatively
‘independent’ of the model setup and network construction procedure. It is applicable to
other survival models and other types of data, for example diagnosis studies with categorical
response variables and generalized linear models, with very minor modifications.

As described in Section 1, there are multiple ways of describing the interplay among genes.
To the best of our knowledge, there is a lack of definitive evidence on the relative
performance of different network construction procedures. Our analysis shows that with
WGCNA, the proposed NSBoost may improve cancer marker selection. It is possible that in
practical data analysis, adopting other network construction methods can further improve
prediction and selection. As the focus of this study is on the development of NSBoost, a
more comprehensive examination of its performance under different networks is beyond our
scope. We adopt the AFT model to describe gene effects on survival. Compared with
alternatives such as the Cox model, this model may have more lucid interpretations and
lower computational cost. Model diagnostics is not conducted, as there is a lack of
diagnostic tools for survival analysis with high-dimensional gene expression data. The
satisfactory prediction performance may partly support the validity of this model. NSBoost
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can effectively account for the ‘module-gene’ two-level hierarchical structure, which is not
the complete information contained in a network. WGCNA and other networks contain other
information, for example the connectedness measure between any two genes within the
same modules. It may be possible to extend the proposed approach and accommodate the
connectedness measure in marker selection. However, as discussed above, with n=d, the
uniform estimation consistency of d(d − 1)/2 connectedness measures is questionable. In
contrast, the module structure can be much more reliable. Thus, we focus on the module
structure in our research. The simulation settings considered in this study are simpler than
what is encountered in practical data analysis. We intentionally choose such settings as they
may favour simple approaches such as Enet and Boost. In data analysis, we conclude that
NSBoost may be preferred as it identifies a smaller number of modules and genes and has
better prediction performance. Analysis of independent validation studies may be needed to
fully confirm performance of NSBoost and identified markers.
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Appendix I

Fig. A.1. Module construction result for dataset D4.

Appendix II. Details on the identified genes and their estimates for dataset
D1–D4

Data D1

Gene ID Gene Name Module Estimate

Hs.154387 Tetratricopeptide repeat domain 35 (TTC35) 1 0·055

Hs.169330 Transgelin 3 (TAGLN3) 1 −0·160

Hs.180946 Family with sequence similarity 69, member A (FAM69A) 1 −0·332

Hs.24734 Oxysterol binding protein (OSBP) 1 0·458

Hs.25351 Iroquois homeobox 5 (IRX5) 1 −0·125

Hs.267632 TATA element modulatory factor 1 (TMF1) 1 −0·147

Hs.2719 WAP four-disulfide core domain 2 (WFDC2) 1 −0·028

Hs.27916 Transcribed locus 1 −0·954
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Data D1

Gene ID Gene Name Module Estimate

Hs.30743 Preferentially expressed antigen in melanoma (PRAME) 1 0·114

Hs.418506 Insulin-like 4 (placenta) (INSL4) 1 −0·086

Hs.45743 Adenosine A2b receptor (ADORA2B) 1 −0·345

Hs.5344 Adaptor-related protein complex 1, gamma 1 subunit (AP1G1) 1 −0·051

Hs.621 Lectin, galactoside-binding, soluble, 3 (LGALS3) 1 −0·538

Hs.687 Cytochrome P450, family 4, subfamily B, polypeptide 1 (CYP4B1) 1 −0·034

Hs.73793 Vascular endothelial growth factor A (VEGFA) 1 0·057

Hs.74592 SATB homeobox 1 (SATB1) 1 −0·240

Hs.75206 Protein phosphatase 3, catalytic subunit, gamma isozyme (PPP3CC) 1 0·114

Hs.75400 Family with sequence similarity 168, member A (FAM168A) 1 0·481

Hs.78452 Solute carrier family 20 (phosphate transporter), member 1 (SLC20A1) 1 0·340

Hs.80642 Signal transducer and activator of transcription 4 (STAT4) 1 −0·300

Hs.82921 Chromosome 6 open reading frame 165 (C6orf165) 1 0·508

Hs.83347 Angio-associated, migratory cell protein (AAMP) 1 −0·521

Hs.89582 Glutamate receptor, ionotropic, AMPA 2 (GRIA2) 1 0·508

Hs.93913 Interleukin 6 (interferon, beta 2) (IL-6) 1 −0·596

Hs.96063 Insulin receptor substrate 1 (IRS1) 1 −0·287

Hs.166994 FAT tumour suppressor homologue 1 (Drosophila) (FAT1) 2 −0·059

Hs.2256 Matrix metallopeptidase 7 (matrilysin, uterine) (MMP7) 2 −0·117

Hs.296634 Ceruloplasmin (ferroxidase) (CP) 2 −0·164

Hs.5716 SEC16 homologue A (Saccharomyces cerevisiae) (SEC16A) 2 −0·203

Hs.75275 Ubiquitination factor E4A (UFD2 homologue, yeast) (UBE4A) 2 0·141

Hs.75737 Pericentriolar material 1 (PCM1) 2 0·124

Data D2

Gene ID Gene name Estimate

Hs.13321 Rearranged L-myc fusion (RLF) −1·740

Hs.177584 3-oxoacid CoA transferase 1 (OXCT1) −0·089

Hs.180610 Splicing factor proline/glutamine-rich (SFPQ) −0·531

Hs.182626 Transmembrane protein 184B (TMEM184B) −0·263

Hs.184693 Transcription elongation factor B (SIII), polypeptide 1 (15 kDa, elongin C) (TCEB1) −0·134

Hs.21595 A kinase (PRKA) anchor protein 17A (AKAP17A) −1·065

Hs.24594 Ubiquitination factor E4B (UBE4B) −0·613

Hs.2488 Lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte protein of 76 kDa)
(LCP2)

0·197

Hs.25363 Presenilin 2 (Alzheimer disease 4) (PSEN2) 1·032

Hs.2706 Glutathione peroxidase 4 (phospholipid hydroperoxidase) (GPX4) −0·276

Hs.282975 Carboxylesterase 2 (CES2) 0·088

Hs.284244 Fibroblast growth factor 2 (basic) (FGF2) −0·567

Hs.28914 Adenine phosphoribosyltransferase (APRT) −1·699

Hs.290070 Gelsolin (GSN) −0·909
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Data D2

Gene ID Gene name Estimate

Hs.297681 Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1
(SERPINA1)

−1·176

Hs.30954 Phosphomevalonate kinase (PMVK) −0·079

Hs.343586 Zinc finger protein 36, C3H type, homologue (mouse) (ZFP36) −0·069

Hs.348935 Immunoglobulin lambda-like polypeptide 1 (IGLL1) −0·586

Hs.406186 Splicing factor 3b, subunit 4, 49 kDa (SF3B4) 0·397

Hs.4980 LIM domain binding 2 (LDB2) −1·418

Hs.5716 SEC16 homolog A (S. cerevisiae) (SEC16A) −0·076

Hs.75643 Nuclear factor (erythroid-derived 2), 45 kDa (NFE2) −0·327

Hs.76780 Protein phosphatase 1, regulatory (inhibitor) subunit 1A (PPP1R1A) 0·218

Hs.7912 Neuronal cell adhesion molecule (NRCAM) −1·076

Hs.79391 Huntingtin (HTT) −0·307

Hs.84746 Regulator of chromosome condensation 1 (RCC1) −1·377

Hs.8769 Transmembrane protein 47 (TMEM47) −0·310

Hs.93183 Vasodilator-stimulated phosphoprotein (VASP) −1·558

Hs.95821 Osteoclast stimulating factor 1 (OSTF1) −0·074

Hs.98938 Protocadherin alpha cluster, complex locus (PCDHA) −0·753

Data D3

Gene name Estimate

CASP2 and RIPK1 domain containing adaptor with death domain (CRADD)   0·011

Diacylglycerol kinase, delta (130 kDa) (DGKD) −0·017

Topoisomerase (DNA) II binding protein (TOPBP1) −0·012

ESTs −0·017

Surfeit 1   0·021

CDC7 cell division cycle 7-like 1 (S. cerevisiae) −0·042

Hypothetical protein FLJ10509 −0·014

Bromodomain adjacent to zinc finger domain, 1B (BAZ1B)   0·017

Septin 6 (SEPT6) −0·01

Complement component (3b/4b) receptor 1, including Knops blood group system (CR1)   0·01

Alanyl (membrane) aminopeptidase (ANPEP)   0·016

GRAMD1A GRAM domain containing 1A −0·054

Osteoblast specific factor 2 (fasciclin I-like) (POSTN)   0·014

Suppression of tumourigenicity 13 (colon carcinoma) (Hsp70 interacting protein) (ST13P4) −0·019

T-cell receptor delta locus (TRA)   0·01

Myosin, light polypeptide 2, regulatory, cardiac, slow (MYL2)   0·008

Ankyrin 1, erythrocytic (ANK1)   0·014

ESTs −0·009

LCOR ligand-dependent nuclear receptor corepressor −0·009

Immunoglobulin superfamily receptor translocation associated 1 (FCRL4)   0·035

Immunoglobulin superfamily receptor translocation associated 1 (FCRL4)   0·011
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Data D4

Gene ID Gene name Estimate

15870 Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1B)   0·02

15977 SHC (Src homology 2 domain containing) transforming protein 1 (SHC1) −0·032

16847 Special AT-rich sequence binding protein 1 (binds to nuclear matrix/scaffold-associating
DNAs) (SATB1)

−0·023

17312 Neuroblastoma RAS viral (v-ras) oncogene homologue (NRAS) −0·03

19261 Inhibitor of DNA binding 2, dominant negative helix-loop-helix protein (ID2)   0·026

24473 Similar to Williams–Beuren syndrome critical region protein 19 (LOC442608) −0·026

24635 Meningioma expressed antigen 5 (hyaluronidase) (MGEA5)   0·026

26475 Chemokine (C–C motif) ligand 3 (CCL19) −0·032

27108 CD24 antigen (small cell lung carcinoma cluster 4 antigen)   0·064

27199 Prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase)
(PTGS2)

  0·024

28027 Activating transcription factor 2   0·066

28973 Tissue inhibitor of metalloproteinase 3 (Sorsby fundus dystrophy, pseudoinflammatory) −0·026

29286 Haematopoietically expressed homeobox (HHEX) −0·009

30596 Immunoglobulin superfamily receptor translocation associated 1   0·017

31298 Zinc finger protein 592   0·059

31543 SH3-domain kinase binding protein 1 (SH3KBP1)   0·041

31702 Hypothetical protein FLJ90709   0·022

31731 CDNA FLJ41270 fis, clone BRAMY2036387   0·036

31979 Kelch-like 14 (Drosophila) (KLHL14)   0·039

32902 MRNA full-length insert cDNA clone EUROIMAGE 1534000 −0·027

33017 Chromosome 3 open reading frame 14 (C3orf14)   0·045

33424 Chromosome 3 open reading frame 1   0·017

Appendix III. Biological implications of the identified genes
D1. Among the identified genes, gene TTC35 is one of the identified breast cancer markers
according to G2SBC (http://www.itb.cnr.it/breastcancer/php/browse.php). Gene FAM69A
encodes a member of the FAM69 family of cysteine-rich type II transmembrane proteins. It
has been implied in the development of multiple sclerosis and ovarian cancer, suggesting
that it may play an essential role in cancer development. It is also involved in the
development of mental disorders. Gene IRX5 encodes a member of the iroquois homeobox
gene family, which are involved in several embryonic developmental processes. Studies
with knockout mice lacking this gene show that it is required for retinal cone bipolar cell
differentiation, and that it negatively regulates potassium channel gene expression in the
heart to ensure coordinated cardiac repolarization. Gene WFDC2 encodes a protein that is a
member of the WFDC domain family. This gene is expressed in pulmonary epithelial cells
and is also found to be expressed in ovarian cancer, which shares multiple genetic markers
with breast cancer. Gene PRAME encodes an antigen that is predominantly expressed in
multiple cancer tissues such as melanomas and that is recognized by cytolytic T-
lymphocytes. It is not expressed in normal tissues, except testis. Gene INSL4 encodes the
insulin-like 4 (INSL4) protein, a member of the insulin superfamily. Its involvement in
breast cancer development is proposed in Burger et al. (2005). Gene Adenosine A2b
receptor (ADORA2B) is over-expressed in cancer tissues under a hypoxic state, promoting
cancer cell growth (Ma et al., 2010a). Gene LGALS3 encodes a member of the galectin
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family of carbohydrate binding proteins. This protein plays a role in numerous cellular
functions including apoptosis, innate immunity, cell adhesion and T-cell regulation. Gene
CYP4B1 encodes a member of the cytochrome P450 superfamily of enzymes. In rodents,
the homologous protein has been shown to metabolize certain carcinogens. Gene VEGFA is
a member of the PDGF/VEGF growth factor family and encodes a protein that is often
found as a disulphide-linked homodimer. This protein is a glycosylated mitogen that
specifically acts on endothelial cells and has various effects, including mediating increased
vascular permeability, inducing angiogenesis, vasculogenesis and endothelial cell growth,
promoting cell migration and inhibiting apoptosis. Published studies have suggested gene
SATB1 as a marker for breast cancer, gastric cancer and non-small cell lung cancer. The
protein encoded by gene SLC20A1 is a sodiumphosphate symporter that absorbs phosphate
from interstitial fluid for use in cellular functions such as metabolism, signal transduction
and nucleic acid and lipid synthesis. The encoded protein is also a retroviral receptor,
causing human cells to be susceptible to infection by gibbon ape leukaemia virus, simian
sarcoma-associated virus, feline leukaemia virus subgroup B, and 10A1 murine leukaemia
virus. The protein encoded by gene STAT4 is a member of the STAT family of transcription
factors. In response to cytokines and growth factors, STAT family members are
phosphorylated by the receptor-associated kinases, and then form homo- or heterodimers
that translocate to the cell nucleus where they act as transcription activators. Gene angio-
associated migratory cell protein (AAMP) is found to be expressed strongly in endothelial
cells, cytotrophoblasts and poorly differentiated colon adenocarcinoma cells found in
lymphatics. Gene IL-6 encodes a cytokine that functions in inflammation and the maturation
of B-cells. The functioning of this gene is implicated in a wide variety of inflammation-
associated disease states, including susceptibility to diabetes mellitus and systemic juvenile
rheumatoid arthritis. Gene FAT1 is an orthologue of the Drosophila fat gene, which encodes
a tumour suppressor essential for controlling cell proliferation. Its product functions as an
adhesion molecule and/or signalling receptor, and is likely to be important in developmental
processes and cell communication. Proteins of the matrix metalloproteinase (MMP) family
are involved in the breakdown of extracellular matrix (ECM) in normal physiological
processes, such as embryonic development, reproduction and tissue remodelling, as well as
in disease processes, such as arthritis and metastasis. The protein encoded by gene CP is a
metalloprotein that binds most of the copper in plasma and is involved in the peroxidation of
Fe(II)transferrin to Fe(III) transferrin. Mutations in this gene cause aceruloplasminemia,
which results in iron accumulation and tissue damage. The protein encoded by gene PCM1
is a component of centriolar satellites, which are electron dense granules scattered around
centrosomes. Chromosomal aberrations involving this gene are associated with papillary
thyroid carcinomas and a variety of haematological malignancies, including atypical chronic
myeloid leukaemia and T-cell lymphoma, suggesting that this gene plays an essential role in
cancer development.

D2. Gene RLF is widely expressed in foetal and adult tissues, suggesting that it has a
general role in transcriptional regulation. It encodes a Zn-15 related zinc finger protein and
plays a role in deregulating the tightly controlled expression of the L-myc oncogene. Gene
OXCT1 encodes a member of the 3-oxoacid CoA-transferase gene family. The encoded
protein is a homodimeric mitochondrial matrix enzyme that plays a central role in
extrahepatic ketone body catabolism by catalysing the reversible transfer of coenzyme A
from succinyl-CoA to acetoacetate. Gene TMEM184B is one of the breast cancer markers
identified by Bonnefoi et al. (2007). Gene TCEB1 encodes the protein elongin C, which is a
subunit of the transcription factor B (SIII) complex. It belongs to the KEGG pathway in
cancer, organism-specific biosystem. The modification of proteins with ubiquitin is an
important cellular mechanism for targeting abnormal or short-lived proteins for degradation.
Gene UBE4B is the strongest candidate in the neuroblastoma tumour suppressor genes.
Gene PSEN2 is one of the confirmed Alzheimer’s disease (AD) susceptibility genes. A
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negative correlation between the occurrence of AD and cancer has been observed. Gene
CES2 encodes a member of the carboxylesterase large family. The protein encoded by this
gene is the major intestinal enzyme and functions in intestine drug clearance. It has been
identified as a cancer marker in Cai et al. (2009). The protein encoded by gene FGF2 is a
member of the fibroblast growth factor (FGF) family. FGF family members bind heparin
and possess broad mitogenic and angiogenic activities. This protein has been implicated in
diverse biological processes, such as limb and nervous system development, wound healing,
and tumour growth. The GSN encoded calcium-regulated protein functions in both assembly
and disassembly of actin filaments. Defects in this gene are a cause of familial amyloidosis
Finnish type (FAF). The protein encoded by gene SERPINA1 is secreted and is a serine
protease inhibitor whose targets include elastase, plasmin, thrombin, trypsin, chymotrypsin
and plasminogen activator. Defects of this gene are associated with the development of
breast cancer and lung cancer. Gene ZFP36 has been implied in the development of colon
cancer, head and neck squamous cell carcinoma, tissue inflammation, cervical cancer and
colorectal cancer, indicating its generic role in cancer development. The protein encoded by
the LDB2 gene is capable of binding to a variety of transcription factors and is likely to
function at enhancers to bring together diverse transcription factors and form higher order
activation complexes or to block formation of such complexes (Jurata & Gill, 1997). The
fact that LIM domain-binding factors are likely to be involved in the coordination of the
transcriptional activity of many diverse factors may implicate them in human phenotypes
characterized by multiple affected sites. Cell adhesion molecules (CAMs) are members of
the mmunoglobulin superfamily. This gene encodes a neuronal CAM with multiple
immunoglobulin-like C2-type domains and fibronectin type-III domains. This ankyrin-
binding protein is involved in neuron –neuron adhesion and promotes directional signalling
during axonal cone growth. This gene is also expressed in non-neural tissues and may play a
general role in cell–cell communication via signalling from its intracellular domain to the
actin cytoskeleton during directional cell migration. Vasodilator-stimulated phosphoprotein
(VASP) is associated with filamentous actin formation and likely plays a widespread role in
cell adhesion and motility. VASP may also be involved in the intracellular signalling
pathways that regulate integrin-ECM interactions. VASP is regulated by the cyclic
nucleotide-dependent kinases PKA and PKG. The protocadherin alpha gene cluster is one of
three related clusters tandemly linked on chromosome five. These neural adhesion proteins
most likely play a critical role in the establishment and function of specific cell–cell
connections.

D3. The protein encoded by gene CRADD is a death domain (CARD/DD)-containing
protein and has been shown to induce cell apoptosis. Through its CARD domain, this
protein interacts with, and thus recruits, caspase 2/ICH1 to the cell death signal transduction
complex that includes tumour necrosis factor receptor 1 (TNFR1A), RIPK1/RIP kinase and
numbers of other CARD domain-containing proteins. Gene DGKD encodes a cytoplasmic
enzyme that phosphorylates diacylglycerol to produce phosphatidic acid. Diacylglycerol and
phosphatidic acid are two lipids that act as second messengers in signalling cascades. Their
cellular concentrations are regulated by the encoded protein, and so it is thought to play an
important role in cellular signal transduction. The TopBP1 protein includes eight BRCT
domains (originally identified in BRCA1) and has homology with BRCA1 over the carboxyl
terminal half of the protein. Gene CDC7 encodes a cell division cycle protein with kinase
activity that is critical for the G1/S transition. The yeast homologue is also essential for
initiation of DNA replication as cell division occurs. Overexpression of this gene product
may be associated with neoplastic transformation for some tumours. Gene BAZ1B encodes
a member of the bromodomain protein family. It is expressed in multiple tumour tissues,
including adrenal tumour, breast tumour, cervical tumour, chondrosarcoma, head and neck
tumour, leukaemia, lymphoma, prostate cancer and several others. Gene CR1 is a member of
the receptors of complement activation (RCA) family and is located in the ‘ cluster RCA’
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region of chromosome 1. The gene encodes a monomeric single-pass type I membrane
glycoprotein. The protein mediates cellular binding to particles and immune complexes that
have activated complement. Decreases in expression of this protein and/or mutations in its
gene have been associated with gallbladder carcinomas, mesangiocapillary
glomerulonephritis, systemic lupus erythematosus and sarcoidosis. Gene ANPEP has been
identified as a marker for lung cancer and prostate cancer. In the small intestine
aminopeptidase N plays a role in the final digestion of peptides generated from hydrolysis of
proteins by gastric and pancreatic proteases. Gene POSTN is involved in the development of
gastric cancer and pancreatic cancer. Gene MYL2 encodes the regulatory light chain
associated with cardiac myosin beta (or slow) heavy chain. Ca+ triggers the phosphorylation
of regulatory light chain that in turn triggers contraction. Ankyrins are a family of proteins
that link the integral membrane proteins to the underlying spectrin-actin cytoskeleton and
play key roles in activities such as cell motility, activation, proliferation, contact and the
maintenance of specialized membrane domains. Gene FCRL4 encodes a member of the
immunoglobulin receptor superfamily and is one of several Fc receptor-like glycoproteins
clustered on the long arm of chromosome 1. This protein may play a role in the function of
memory B-cells in the epithelia. Aberrations in the chromosomal region encoding this gene
are associated with non-Hodgkin lymphoma and multiple myeloma.

D4. Gene IFIT1B is identified as a lymphoma susceptibility marker in Gaiser et al. (2002).
Gene SHC1 encodes three main isoforms that differ in activities and subcellular location.
Although all three are adapter proteins in signal transduction pathways, the longest (p66Shc)
may be involved in regulating life span and the effects of reactive oxygen species. The other
two isoforms, p52Shc and p46Shc, link activated receptor tyrosine kinases to the Ras
pathway by recruitment of the GRB2/SOS complex. Gene SATB1 has been identified as a
marker for breast cancer, gastric cancer and non-small cell lung cancer, suggesting its
fundamental role in cancer development. Gene NRAS is an N-ras oncogene encoding a
membrane protein that shuttles between the Golgi apparatus and the plasma membrane.
Mutations in this gene have been associated with somatic rectal cancer, follicular thyroid
cancer, autoimmune lymphoproliferative syndrome, Noonan syndrome and juvenile
myelomonocytic leukaemia. The protein encoded by gene ID2 belongs to the inhibitor of
DNA binding family, members of which are transcriptional regulators that contain a helix-
loop-helix (HLH) domain but not a basic domain. This protein may play a role in negatively
regulating cell differentiation. Gene CCL19 is one of several CC cytokine genes clustered
on the p-arm of chromosome 9. Cytokines are a family of secreted proteins involved in
immunoregulatory and inflammatory processes. The CC cytokines are proteins characterized
by two adjacent cysteines. The cytokine encoded by this gene may play a role in normal
lymphocyte recirculation and homing. It also plays an important role in trafficking of T-cells
in thymus, and in T-cell and B-cell migration to secondary lymphoid organs. Gene PTGS2
encodes the inducible isozyme. It is regulated by specific stimulatory events, suggesting that
it is responsible for the prostanoid biosynthesis involved in inflammation and mitogenesis.
Gene TIMP3 belongs to the TIMP gene family. The proteins encoded by this gene family
are inhibitors of the MMPs, a group of peptidases involved in degradation of the ECM. It
has been implied in the development of multiple cancers, including for example colorectal
cancer, head and neck cancer and breast cancer. Gene HHEX encodes a member of the
homeobox family of transcription factors, many of which are involved in developmental
processes. Gene ZNF592 plays a role in a complex developmental pathway and the
regulation of genes involved in cerebellar development. Gene SH3KBP1 encodes an adapter
protein that contains three N-terminal Src homology domains, a proline-rich region and a C-
terminal coiled-coil domain. The encoded protein facilitates protein–protein interactions and
has been implicated in numerous cellular processes including apoptosis, cytoskeletal
rearrangement, cell adhesion and in the regulation of clathrin-dependent endocytosis.
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Fig. 1.
Parameter path of NSBoost: estimates as a function of number of iterations. (a) The four
panels correspond to four modules in Step 1 of boosting. (b) The panel corresponds to four
super markers in Step 2 of boosting. Vertical lines correspond to the selected number of
iterations.
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Fig. 2.
Parameter path of NBoost: estimates as a function of number of iterations. (a) The four
panels correspond to four modules in Step 1 of boosting. (b) The panel corresponds to four
super markers in Step 2 of boosting. Vertical lines correspond to the selected number of
iterations.
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Table 2

Description of datasets. Gene: number of genes profiled

Data Disease Platform Gene Sample

D1: Sorlie et al. (2001) Breast cancer cDNA 8102 58

D2: Huang et al. (2003) Breast cancer Affymetrix 12 625 71

D3: Rosenwald et al.(2002) DLBCL cDNA 7399 240

D4: Rosenwald et al. (2003) MCL cDNA 8810 92
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